A Dynamic Chemical Clip in Supramolecular Framework for Sorting Alkylaromatic Isomers using Thermodynamic and Kinetic Preferences
Subhajit Laha
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
These authors contributed equally to this work.
Search for more papers by this authorDr. Ritesh Haldar
New Chemistry Unit (NCU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Present address: Tata Institute of Fundamental Research Hyderabad, Gopanpally, 500046 Telangana, India
These authors contributed equally to this work.
Search for more papers by this authorNimish Dwarkanath
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorDr. Satyanarayana Bonakala
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorDr. Abhishek Sharma
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorDr. Arpan Hazra
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorProf. Sundaram Balasubramanian
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorCorresponding Author
Prof. Tapas Kumar Maji
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
New Chemistry Unit (NCU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorSubhajit Laha
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
These authors contributed equally to this work.
Search for more papers by this authorDr. Ritesh Haldar
New Chemistry Unit (NCU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Present address: Tata Institute of Fundamental Research Hyderabad, Gopanpally, 500046 Telangana, India
These authors contributed equally to this work.
Search for more papers by this authorNimish Dwarkanath
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorDr. Satyanarayana Bonakala
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorDr. Abhishek Sharma
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorDr. Arpan Hazra
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorProf. Sundaram Balasubramanian
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorCorresponding Author
Prof. Tapas Kumar Maji
Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
New Chemistry Unit (NCU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064 India
Search for more papers by this authorAbstract
Adsorptive chemical separation is at the forefront of future technologies, for use in chemical and petrochemical industries. In this process, a porous adsorbent selectively allows a single component from a mixture of three or more chemical components to be adsorbed or permeate. To separate the unsorted chemicals, a different adsorbent is needed. A unique adsorbent which can recognize and separate each of the chemicals from a mixture of three or more components is the necessity for the next generation porous materials. In this regard, we demonstrate a “dynamic chemical clip” in a supramolecular framework capable of thermodynamic and kinetics-based chemical separation. The dynamic space, featuring a strong preference for aromatic guests through π-π and C-H⋅⋅⋅π interactions and adaptability, can recognize the individual chemical isomers from mixtures and separate those based on thermodynamic and kinetic factors. The liquid-phase selectivity and separation of the aromatic isomers are possible by the adaptability of the “chemical clip” and here we elucidate the prime factors in a combinatorial approach involving crystallographic evidence and detailed computational studies.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202106784-sup-0001-misc_information.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Materials for Separation Technologies: Energy and Emission Reduction Opportunities; Technical Report by Oak Ridge National Laboratory, USDOE Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, United States 2005.
- 2S. Brueske, C. Kramer, A. Fisher, Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Petroleum Refining; Program Document by Energetics, USDOE Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, United States 2015.
- 3D. S. Sholl, R. P. Lively, Nature 2016, 533, 316.
- 4H. Wang, X. Dong, V. Colombo, Q. Wang, Y. Liu, W. Liu, X.-L. Wang, X.-Y. Huang, D. M. Proserpio, A. Sironi, Y. Han, J. Li, Adv. Mater. 2018, 30, 1805088.
- 5Z. Song, Y. Huang, W. L. Xu, L. Wang, Y. Bao, S. Li, M. Yu, Sci. Rep. 2015, 5, 13981.
- 6J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504.
- 7Y. Yang, P. Bai, X. Guo, Ind. Eng. Chem. Res. 2017, 56, 14725–14753.
- 8H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 9S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430.
- 10M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26, 310–322.
- 11O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. Ö. Yazaydın, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 15016–15021.
- 12H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O′Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018–1023.
- 13R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 3875–3877.
- 14O. M. Yaghi, M. O′Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714.
- 15H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846–850.
- 16X. Zhao, Y. Wang, D.-S. Li, X. Bu, P. Feng, Adv. Mater. 2018, 30, 1705189.
- 17B. Van de Voorde, B. Bueken, J. Denayer, D. De Vos, Chem. Soc. Rev. 2014, 43, 5766–5788.
- 18R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Coord. Chem. Rev. 2019, 378, 87–103.
- 19D.-D. Zhou, P. Chen, C. Wang, S.-S. Wang, Y. Du, H. Yan, Z.-M. Ye, C.-T. He, R.-K. Huang, Z.-W. Mo, N.-Y. Huang, J.-P. Zhang, Nat. Mater. 2019, 18, 994–998.
- 20S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695–704.
- 21A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062–6096.
- 22I. Beurroies, M. Boulhout, P. L. Llewellyn, B. Kuchta, G. Férey, C. Serre, R. Denoyel, Angew. Chem. Int. Ed. 2010, 49, 7526–7529; Angew. Chem. 2010, 122, 7688–7691.
- 23T. K. Maji, R. Matsuda, S. Kitagawa, Nat. Mater. 2007, 6, 142–148.
- 24J. D. Evans, V. Bon, I. Senkovska, H.-C. Lee, S. Kaskel, Nat. Commun. 2020, 11, 2690.
- 25S. Krause, N. Hosono, S. Kitagawa, Angew. Chem. Int. Ed. 2020, 59, 15325–15341; Angew. Chem. 2020, 132, 15438–15456.
- 26P. Kanoo, R. Haldar, S. K. Reddy, A. Hazra, S. Bonakala, R. Matsuda, S. Kitagawa, S. Balasubramanian, T. K. Maji, Chem. Eur. J. 2016, 22, 15864–15873.
- 27P. Kanoo, R. Haldar, P. Sutar, A. Chakraborty, T. K. Maji, in Functional Supramolecular Materials: From Surfaces to MOFs, The Royal Society of Chemistry, London, 2017, pp. 412–453.
10.1039/9781788010276-00412 Google Scholar
- 28L. Li, R.-B. Lin, R. Krishna, X. Wang, B. Li, H. Wu, J. Li, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 7733–7736.
- 29P. A. P. Mendes, P. Horcajada, S. Rives, H. Ren, A. E. Rodrigues, T. Devic, E. Magnier, P. Trens, H. Jobic, J. Ollivier, G. Maurin, C. Serre, J. A. C. Silva, Adv. Funct. Mater. 2014, 24, 7666–7673.
- 30R. Haldar, R. Matsuda, S. Kitagawa, S. J. George, T. K. Maji, Angew. Chem. Int. Ed. 2014, 53, 11772–11777; Angew. Chem. 2014, 126, 11966–11971.
- 31J. E. Warren, C. G. Perkins, K. E. Jelfs, P. Boldrin, P. A. Chater, G. J. Miller, T. D. Manning, M. E. Briggs, K. C. Stylianou, J. B. Claridge, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2014, 53, 4592–4596; Angew. Chem. 2014, 126, 4680–4684.
- 32M. I. Gonzalez, M. T. Kapelewski, E. D. Bloch, P. J. Milner, D. A. Reed, M. R. Hudson, J. A. Mason, G. Barin, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2018, 140, 3412–3422.
- 33R. El Osta, A. Carlin-Sinclair, N. Guillou, R. I. Walton, F. Vermoortele, M. Maes, D. de Vos, F. Millange, Chem. Mater. 2012, 24, 2781–2791.
- 34M. Zaworotko, N. Kumar, Z. Chang, M.-H. Yu, A. Kumar, D. O′Nolan, X.-H. Bu, E. Patyk-Kaźmierczak, A. A. Bezrukov, S. Mukherjee, S.-Q. Wang, Chem. Sci. 2020, 11, 6889–6895.
- 35A. S. Münch, F. O. R. L. Mertens, J. Mater. Chem. 2012, 22, 10228–10234.
- 36A. Ahmed, M. Forster, R. Clowes, D. Bradshaw, P. Myers, H. Zhang, J. Mater. Chem. A 2013, 1, 3276–3286.
- 37B. Saccoccia, A. M. Bohnsack, N. W. Waggoner, K. H. Cho, J. S. Lee, D.-Y. Hong, V. M. Lynch, J.-S. Chang, S. M. Humphrey, Angew. Chem. Int. Ed. 2015, 54, 5394–5398; Angew. Chem. 2015, 127, 5484–5488.
- 38V. Finsy, H. Verelst, L. Alaerts, D. De Vos, P. A. Jacobs, G. V. Baron, J. F. M. Denayer, J. Am. Chem. Soc. 2008, 130, 7110–7118.
- 39B. Barton, E. C. Hosten, P. L. Pohl, Tetrahedron 2016, 72, 8099–8105.
- 40T. C. T. Pham, H. S. Kim, K. B. Yoon, Science 2011, 334, 1533–1538.
- 41D.-Y. Koh, B. A. McCool, H. W. Deckman, R. P. Lively, Science 2016, 353, 804–807.
- 42C.-T. He, L. Jiang, Z.-M. Ye, R. Krishna, Z.-S. Zhong, P.-Q. Liao, J. Xu, G. Ouyang, J.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2015, 137, 7217–7223.
- 43J. M. Holcroft, K. J. Hartlieb, P. Z. Moghadam, J. G. Bell, G. Barin, D. P. Ferris, E. D. Bloch, M. M. Algaradah, M. S. Nassar, Y. Y. Botros, K. M. Thomas, J. R. Long, R. Q. Snurr, J. F. Stoddart, J. Am. Chem. Soc. 2015, 137, 5706–5719.
- 44M. Lusi, L. J. Barbour, Angew. Chem. Int. Ed. 2012, 51, 3928–3931; Angew. Chem. 2012, 124, 3994–3997.
- 45D. Peralta, G. Chaplais, A. Simon-Masseron, K. Barthelet, C. Chizallet, A.-A. Quoineaud, G. D. Pirngruber, J. Am. Chem. Soc. 2012, 134, 8115–8126.
- 46S. Mukherjee, B. Joarder, A. V. Desai, B. Manna, R. Krishna, S. K. Ghosh, Inorg. Chem. 2015, 54, 4403–4408.
- 47M. Maes, F. Vermoortele, L. Alaerts, S. Couck, C. E. A. Kirschhock, J. F. M. Denayer, D. E. De Vos, J. Am. Chem. Soc. 2010, 132, 15277–15285.
- 48K. Jie, M. Liu, Y. Zhou, M. A. Little, S. Bonakala, S. Y. Chong, A. Stephenson, L. Chen, F. Huang, A. I. Cooper, J. Am. Chem. Soc. 2017, 139, 2908–2911.
- 49Q.-K. Liu, J.-P. Ma, Y.-B. Dong, Chem. Eur. J. 2009, 15, 10364–10368.
- 50B. Moosa, L. Alimi, A. Shkurenko, A. Fakim, P. Bhatt, G. Zhang, M. Eddaoudi, N. Khashab, Angew. Chem. Int. Ed. 2020, 59, 21367–21371; Angew. Chem. 2020, 132, 21551–21555.
- 51M. du Plessis, V. I. Nikolayenko, L. J. Barbour, J. Am. Chem. Soc. 2020, 142, 4529–4533.
- 52D. Tanaka, A. Henke, K. Albrecht, M. Moeller, K. Nakagawa, S. Kitagawa, J. Groll, Nat. Chem. 2010, 2, 410–416.
- 53N. Sikdar, A. Hazra, T. K. Maji, Inorg. Chem. 2014, 53, 5993–6002.
- 54N. Sikdar, M. Bhogra, U. V. Waghmare, T. K. Maji, J. Mater. Chem. A 2017, 5, 20959–20968.
- 55A. L. Myers, J. M. Prausnitz, AIChE J. 1965, 11, 121–127.
- 56G. Fraux, A. Boutin, A. H. Fuchs, F.-X. Coudert, Adsorption 2018, 24, 233–241.
- 57F.-X. Coudert, C. Mellot-Draznieks, A. H. Fuchs, A. Boutin, J. Am. Chem. Soc. 2009, 131, 11329–11331.
- 58S. Couck, T. R. C. Van Assche, Y.-Y. Liu, G. V. Baron, P. Van Der Voort, J. F. M. Denayer, Langmuir 2015, 31, 5063–5070.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.