Fighting Antibiotic-Resistant Bacteria: Promising Strategies Orchestrated by Molecularly Imprinted Polymers
Corresponding Author
Dr. Bernadette Tse Sum Bui
CNRS Laboratory for Enzyme and Cell Engineering, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France
Search for more papers by this authorTiffany Auroy
CNRS Laboratory for Enzyme and Cell Engineering, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Karsten Haupt
CNRS Laboratory for Enzyme and Cell Engineering, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France
Search for more papers by this authorCorresponding Author
Dr. Bernadette Tse Sum Bui
CNRS Laboratory for Enzyme and Cell Engineering, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France
Search for more papers by this authorTiffany Auroy
CNRS Laboratory for Enzyme and Cell Engineering, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Karsten Haupt
CNRS Laboratory for Enzyme and Cell Engineering, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203 Compiègne Cedex, France
Search for more papers by this authorAbstract
Infections caused by antibiotic-resistant bacteria are difficult and sometimes impossible to treat, making them one of the major public health problems of our time. We highlight how one unique material, molecularly imprinted polymers (MIPs), can orchestrate several strategies to fight this serious societal issue. MIPs are tailor-made biomimetic supramolecular receptors that recognize and bind target molecules with high affinity and selectivity, comparable to those of antibodies. While research on MIPs for combatting cancer has flourished, comprehensive work on their involvement in combatting resistant superbugs has been rather scarce. This review aims at filling this gap. We will describe the causes of bacterial resistance and at which level MIPs can deploy their weapons. MIPs’ targets can be biofilm constituents, quorum sensing messengers, bacterial surface proteins and antibiotic-deactivating enzymes, among others. We will conclude with the current challenges and future developments in this field.
Conflict of interest
The authors declare no conflict of interest.
References
- 1G. Wulff, A. Sarhan, K. Zabrocki, Tetrahedron Lett. 1973, 14, 4329–4332.
10.1016/S0040-4039(01)87213-0 Google Scholar
- 2R. Arshady, K. Mosbach, Makromol. Chem. 1981, 182, 687–692.
- 3K. Haupt, A. V. Linares, M. Bompart, B. Tse Sum Bui, Top. Curr. Chem. 2012, 325, 1–28.
- 4K. Haupt, Anal. Chem. 2003, 75, 376A–383A.
- 5
- 5aA. Martín-Esteban, Trends Environ. Anal. Chem. 2016, 9, 8–14;
- 5bM. Dabrowski, P. Lach, M. Cieplak, W. Kutner, Biosens. Bioelectron. 2018, 102, 17–26;
- 5cB. Tse Sum Bui, K. Haupt, Anal. Bioanal. Chem. 2010, 398, 2481–2492;
- 5dJ. Kupai, M. Razali, S. Buyuktiryaki, R. Kecili, G. Szekely, Polym. Chem. 2017, 8, 666–673.
- 6
- 6aH. Zhang, Adv. Mater. 2020, 32, 1806328;
- 6bS. Xu, L. Wang, Z. Liu, Angew. Chem. Int. Ed. 2021, 60, 3858–3869; Angew. Chem. 2021, 133, 3902–3913;
- 6cJ. Pan, W. Chen, Y. Ma, G. Pan, Chem. Soc. Rev. 2018, 47, 5574–5587.
- 7J. Xu, H. Miao, J. Wang, G. Pan, Small 2020, 16, 1906644.
- 8K. Haupt, P. X. Medina Rangel, B. Tse Sum Bui, Chem. Rev. 2020, 120, 9554–9582.
- 9A. Rachkov, N. Minoura, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2001, 1544, 255–266.
- 10H. Nishino, C. S. Huang, K. J. Shea, Angew. Chem. Int. Ed. 2006, 45, 2392–2396; Angew. Chem. 2006, 118, 2452–2456.
- 11
- 11aL. Pasquardini, A. M. Bossi, Anal. Bioanal. Chem. 2021, 413, 6101–6115;
- 11bA. M. Bossi, L. Pasquardini, Methods Mol. Biol. 2021, 2359, 269–282.
- 12D. Dechtrirat, K. J. Jetzschmann, W. F. M. Stöcklein, F. W. Scheller, N. Gajovic-Eichelmann, Adv. Funct. Mater. 2012, 22, 5231–5237.
- 13J. Xu, F. Merlier, B. Avalle, V. Vieillard, P. Debré, K. Haupt, B. Tse Sum Bui, ACS Appl. Mater. Interfaces 2019, 11, 9824–9831.
- 14K. Yang, S. Li, L. Liu, Y. Chen, W. Zhou, J. Pei, Z. Liang, L. Zhang, Y. Zhang, Adv. Mater. 2019, 31, 1902048.
- 15
- 15aP. X. Medina Rangel, E. Moroni, F. Merlier, L. A. Gheber, R. Vago, B. Tse Sum Bui, K. Haupt, Angew. Chem. Int. Ed. 2020, 59, 2816–2822; Angew. Chem. 2020, 132, 2838–2844;
- 15bA. Mier, I. Maffucci, F. Merlier, E. Prost, V. Montagna, G. U. Ruiz-Esparza, J. V. Bonventre, P. K. Dhal, B. Tse Sum Bui, P. Sakhaii, K. Haupt, Angew. Chem. Int. Ed. 2021, 60, 20849–20857; Angew. Chem. 2021, 133, 21017–21025.
- 16
- 16aZ. Bie, Y. Chen, J. Ye, S. Wang, Z. Liu, Angew. Chem. Int. Ed. 2015, 54, 10211–10215; Angew. Chem. 2015, 127, 10349–10353;
- 16bS. Shinde, Z. El-Schich, A. Malakpour, W. Wan, N. Dizeyi, R. Mohammadi, K. Rurack, A. Gjörloff Wingren, B. Sellergren, J. Am. Chem. Soc. 2015, 137, 13908–13912;
- 16cM. Panagiotopoulou, Y. Salinas, S. Beyazit, S. Kunath, A. G. Mayes, L. Duma, E. Prost, M. Resmini, B. Tse Sum Bui, K. Haupt, Angew. Chem. Int. Ed. 2016, 55, 8244–8248; Angew. Chem. 2016, 128, 8384–8388;
- 16dP. X. Medina Rangel, S. Laclef, J. Xu, M. Panagiotopoulou, J. Kovensky, B. Tse Sum Bui, K. Haupt, Sci. Rep. 2019, 9, 3923.
- 17
- 17aS. Beyazit, S. Ambrosini, N. Marchyk, E. Palo, V. Kale, T. Soukka, B. Tse Sum Bui, K. Haupt, Angew. Chem. Int. Ed. 2014, 53, 8919–8923; Angew. Chem. 2014, 126, 9065–9069;
- 17bZ. Adali-Kaya, B. Tse Sum Bui, A. Falcimagne-Cordin, K. Haupt, Angew. Chem. Int. Ed. 2015, 54, 5192–5195; Angew. Chem. 2015, 127, 5281–5284.
- 18
- 18aR. Suedee, C. Jantarat, W. Lindner, H. Viernstein, S. Songkro, T. Srichana, J. Controlled Release 2010, 142, 122–131;
- 18bS. Ambrosini, S. Beyazit, K. Haupt, B. Tse Sum Bui, Chem. Commun. 2013, 49, 6746–6748;
- 18cY. Ma, Y. Zhang, M. Zhao, X. Guo, H. Zhang, Chem. Commun. 2012, 48, 6217–6219;
- 18dW. Chen, Y. Ma, J. Pan, Z. Meng, G. Pan, B. Sellergren, Polymers 2015, 7, 1689–1715;
- 18eY. Zhao, C. Simon, M. Daoud Attieh, K. Haupt, A. Falcimaigne-Cordin, RSC Adv. 2020, 10, 5978–5987.
- 19
- 19aH. Gong, S. Hajizadeh, W. Liu, L. Ye, ACS Appl. Bio Mater. 2021, 4, 2829–2838;
- 19bA. Gupta, S. Mumtaz, C. H. Li, I. Hussain, V. M. Rotello, Chem. Soc. Rev. 2019, 48, 415–427.
- 20E. Cazares-Cortes, M. Nerantzaki, J. Fresnais, C. Wilhelm, N. Griffete, C. Ménager, Nanomaterials 2018, 8, 850.
- 21
- 21aD. Yin, X. Li, Y. Ma, Z. Liu, Chem. Commun. 2017, 53, 6716–6719;
- 21bA. Yoshida, Y. Kitayama, K. Kiguchi, T. Yamada, H. Akasaka, R. Sasaki, T. Takeuchi, ACS Appl. Bio Mater. 2019, 2, 1177–1183.
- 22
- 22aS. R. Martínez, L. E. Ibarra, R. A. Ponzio, M. V. Forcone, A. B. Wendel, C. A. Chesta, M. B. Spesia, R. E. Palacios, ACS Infect. Dis. 2020, 6, 2202–2213;
- 22bY. Long, Z. Lia, Q. Bia, C. Denga, Z. Chena, S. Bhattachayyab, C. Li, Int. J. Pharm. 2016, 502, 232–241.
- 23X. A. Ton, V. Acha, P. Bonomi, B. Tse Sum Bui, K. Haupt, Biosens. Bioelectron. 2015, 64, 359–366.
- 24
- 24aH. Y. Wang, T. Kobayashi, N. Fujii, J. Chem. Technol. Biotechnol. 1997, 70, 355–362;
10.1002/(SICI)1097-4660(199712)70:4<355::AID-JCTB793>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 24bB. Rückert, A. J. Hall, B. Sellergren, J. Mater. Chem. 2002, 12, 2275–2280;
- 24cR. H. Schmidt, K. Mosbach, K. Haupt, Adv. Mater. 2004, 16, 719–722;
- 24dT. Saeki, H. Sunayama, Y. Kitayama, T. Takeuchi, Langmuir 2019, 35, 1320–1326.
- 25S. Beyazit, B. Tse Sum Bui, K. Haupt, C. Gonzato, Prog. Polym. Sci. 2016, 62, 1–21.
- 26
- 26aL. Ye, P. A. G. Cormack, K. Mosbach, Anal. Commun. 1999, 36, 35–38;
- 26bJ. Wang, P. A. G. Cormack, D. C. Sherrington, E. Khoshdel, Angew. Chem. Int. Ed. 2003, 42, 5336–5338; Angew. Chem. 2003, 115, 5494–5496.
- 27D. Vaihinger, K. Landfester, I. Kräuter, H. Brunner, G. E. M. Tovar, Macromol. Chem. Phys. 2002, 203, 1965–1973.
- 28X. Shen, L. Ye, Macromolecules 2011, 44, 5631–5637.
- 29L. Ye, T. Zhou, X. Shen, Mol. Impr. 2015, 2, 37–45.
- 30X. Shen, J. S. Bonde, T. Kamra, L. Bülow, J. C. Leo, D. Linke, L. Ye, Angew. Chem. Int. Ed. 2014, 53, 10687–10690; Angew. Chem. 2014, 126, 10863–10866.
- 31K. I. Ogawa, M. Hyuga, T. Okada, N. Minoura, Biosens. Bioelectron. 2012, 38, 215–219.
- 32E. Yilmaz, K. Haupt, K. Mosbach, Angew. Chem. Int. Ed. 2000, 39, 2115–2118;
10.1002/1521-3773(20000616)39:12<2115::AID-ANIE2115>3.0.CO;2-V CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 2178–2181.
- 33
- 33aK. Ren, R. N. Zare, ACS Nano 2012, 6, 4314–4318;
- 33bK. Eersels, P. Lieberzeit, P. Wagner, ACS Sens. 2016, 1, 1171–1187;
- 33cE. Spieker, P. A. Lieberzeit, Procedia Eng. 2016, 168, 561–564.
- 34C. Gonzato, M. Courty, P. Pasetto, K. Haupt, Adv. Funct. Mater. 2011, 21, 3947–3953.
- 35S. Carrasco, E. Benito-Peña, F. Navarro-Villoslada, J. Langer, M. N. Sanz-Ortiz, J. Reguera, L. M. Liz-Marzán, M. C. Moreno-Bondi, Chem. Mater. 2016, 28, 7947–7954.
- 36
- 36aA. Biffis, N. B. Graham, G. Siedlaczek, S. Stalberg, G. Wulff, Macromol. Chem. Phys. 2001, 202, 163–171;
- 36bP. Çakir, A. Cutivet, M. Resmini, B. Tse Sum Bui, K. Haupt, Adv. Mater. 2013, 25, 1048–1051;
- 36cD. Carboni, K. Flavin, A. Servant, V. Gouverneur, M. Resmini, Chem. Eur. J. 2008, 14, 7059–7065.
- 37F. Canfarotta, A. Poma, A. Guerreiro, S. Piletsky, Nat. Protoc. 2016, 11, 443–455.
- 38
- 38aJ. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. V. Piddock, Nat. Rev. Microbiol. 2015, 13, 42–51;
- 38bH. Venter, Biosci. Rep. 2019, 39, BSR20180474;
- 38cM. Laws, A. Shaaban, K. M. Rahman, FEMS Microbiol. Rev. 2019, 43, 490–516;
- 38dI. Alav, J. M. Sutton, K. M. Rahman, J. Antimicrob. Chemother. 2018, 73, 2003–2020;
- 38eM. Arzanlou, W. C. Chai, H. Venter, Essays Biochem. 2017, 61, 49–59.
- 39H. Koo, R. N. Allan, R. P. Howlin, P. Stoodley, L. Hall-Stoodley, Nat. Rev. Microbiol. 2017, 15, 740–755.
- 40L. Karygianni, Z. Ren, H. Koo, T. Thurnheer, Trends Microbiol. 2020, 28, 668–681.
- 41C. Stephens, Curr. Biol. 2002, 12, R132–R134.
- 42
- 42aA. Cutivet, C. Schembri, J. Kovensky, K. Haupt, J. Am. Chem. Soc. 2009, 131, 14699–14702;
- 42bT. Zhang, K. K. Dar, Y. Li, J. Guo, W. Su, K. J. Shea, T. Tan, Y. Lv, ACS Biomater. Sci. Eng. 2021, 7, 3190–3200;
- 42cJ. Xu, H. Miao, L. Zou, B. Tse Sum Bui, K. Haupt, G. Pan, Angew. Chem. Int. Ed. 2021, 60, 24526–24533; Angew. Chem. 2021, 133, 24731–24738.
- 43
- 43aF. Ramos-Martín, T. Annaval, S. Buchoux, C. Sarazin, N. D′Amelio, Life Sci. Alliance 2019, 2, e201900512;
- 43bG. Wang, X. Li, Z. Wang, Nucleic Acids Res. 2016, 44, D1087–D1093.
- 44H. B. Koo, J. Seo, Pept. Sci. 2019, 111, e24122.
- 45S. J. Lam, E. H. H. Wong, C. Boyer, G. G. Qiao, Prog. Polym. Sci. 2018, 76, 40–64.
- 46S. J. Lam, N. M. O'Brien-Simpson, N. Pantarat, A. Sulistio, E. H. H. Wong, Y.-Y. Chen, J. C. Lenzo, J. A. Holden, A. Blencowe, E. C. Reynolds, G. G. Qiao, Nat. Microbiol. 2016, 1, 16162.
- 47R. Namivandi-Zangeneh, Z. Sadrearhami, D. Dutta, M. Willcox, E. H. H. Wong, C. Boyer, ACS Infect. Dis. 2019, 5, 1357–1365.
- 48S. Zaidi, L. Misba, A. U. Khan, Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2281–2301.
- 49Y. Wang, Y. Yang, Y. Shi, H. Song, C. Yu, Adv. Mater. 2020, 32, 1904106.
- 50H. Zazo, C. I. Colino, J. M. Lanao, J. Controlled Release 2016, 224, 86–102.
- 51M. C. Norell, H. S. Andersson, I. A. Nichols, J. Mol. Recognit. 1998, 11, 98–102.
10.1002/(SICI)1099-1352(199812)11:1/6<98::AID-JMR399>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 52D. Cunliffe, A. Kirby, C. Alexander, Adv. Drug Delivery Rev. 2005, 57, 1836–1853.
- 53F. Puoci, G. Cirillo, M. Curcio, O. I. Parisi, F. Iemma, N. Picci, Expert Opin. Drug Delivery 2011, 8, 1379–1393.
- 54C. Alvarez-Lorenzo, A. Concheiro, J. Chromatogr. B 2004, 804, 231–245.
- 55P. Luliński, Mater. Sci. Eng. C 2017, 76, 1344–1353.
- 56R. Liu, A. Poma, Molecules 2021, 26, 3589.
- 57B. Li, J. Xu, A. J. Hall, K. Haupt, B. Tse Sum Bui, J. Mol. Recognit. 2014, 27, 559–565.
- 58C. Mao, X. Xie, X. Liu, Z. Cui, X. Yang, K. W. K. Yeung, H. Pan, P. K. Chu, S. Wu, Mater. Sci. Eng. C 2017, 77, 84–91.
- 59H. Kempe, A. P. Pujolràs, M. Kempe, Pharm. Res. 2015, 32, 375–388.
- 60M. Jia, Z. Zhang, J. Li, X. Ma, L. Chen, X. Yang, TrAC Trends Anal. Chem. 2018, 106, 190–201.
- 61A. L. Bole, P. Manesiotis, Adv. Mater. 2016, 28, 5349–5366.
- 62K. K. Dar, S. Shao, T. Tan, Y. Lv, Biotechnol. Adv. 2020, 45, 107640.
- 63H. Bao, B. Yang, X. Zhang, L. Lei, Z. Li, Chem. Commun. 2017, 53, 2319–2322.
- 64A. Aherne, C. Alexander, M. J. Payne, N. Perez, E. N. Vulfson, J. Am. Chem. Soc. 1996, 118, 8771–8772.
- 65M. Golabi, F. Kuralay, E. W. H. Jager, V. Beni, A. P. F. Turner, Biosens. Bioelectron. 2017, 93, 87–93.
- 66M. T. Dulay, N. Zaman, D. Jaramillo, A. C. Mody, R. N. Zare, C-J. Carbon Res. 2018, 4, 29.
- 67P. Cornelis, S. Givanoudi, D. Yongabi, H. Iken, S. Duwé, O. Deschaume, J. Robbens, P. Dedecker, C. Bartic, M. Wübbenhorst, M. J. Schöning, M. Heyndrickx, P. Wagner, Biosens. Bioelectron. 2019, 136, 97–105.
- 68A. Mujahid, G. Mustafa, F. L. Dickert, Biosensors 2018, 8, 52.
- 69I. Perçin, N. Idil, M. Bakhshpour, E. Yılmaz, B. Mattiasson, A. Denizli, Sensors 2017, 17, 1375.
- 70D. Yongabi, M. Khorshid, P. Losada-Pérez, K. Eersels, O. Deschaume, J. D′Haen, C. Bartic, J. Hooyberghs, R. Thoelen, M. Wübbenhorst, P. Wagner, Sens. Actuators B 2018, 255, 907–917.
- 71R. D. Crapnell, A. Hudson, C. W. Foster, K. Eersels, B. van Grinsven, T. J. Cleij, C. E. Banks, M. Peeters, Sensors 2019, 19, 1204.
- 72F. Balloux, L. van Dorp, BMC Biol. 2017, 15, 4–9.
- 73N. Abed, P. Couvreur, Int. J. Antimicrob. Agents 2014, 43, 485–496.
- 74K. M. Lehman, M. Grabowicz, Antibiotics 2019, 8, 163.
- 75Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku, K. J. Shea, J. Am. Chem. Soc. 2010, 132, 6644–6645.
- 76S. Ranf, PLoS Pathog. 2016, 12, e1005596.
- 77M. J. Abdin, Z. Altintas, I. E. Tothill, Biosens. Bioelectron. 2015, 67, 177–183.
- 78P. de Oliveira Magalhães, A. M. Lopes, P. G. Mazzola, C. Rangel-Yagui, T. C. V. Penna, A. Pessoa, J. Pharm. Pharm. Sci. 2007, 10, 388–404.
- 79R. Sulc, G. Szekely, S. Shinde, C. Wierzbicka, F. Vilela, D. Bauer, B. Sellergren, Sci. Rep. 2017, 7, 44299.
- 80J. L. Ding, B. Ho, TRENDS Biotechnol. 2001, 19, 277–281.
- 81M. B. Miller, B. L. Bassler, Annu. Rev. Microbiol. 2001, 55, 165–199.
- 82C. M. Waters, B. L. Bassler, Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346.
- 83
- 83aF. Verbeke, S. De Craemer, N. Debunne, Y. Janssens, E. Wynendaele, C. Van de Wiele, B. De Spiegeleer, Front. Neurosci. 2017, 11, 183;
- 83bL. Gram, L. Ravn, M. Rasch, J. B. Bruhn, A. B. Christensen, M. Givskov, Int. J. Food Microbiol. 2002, 78, 79–97.
- 84E. V. Piletska, G. Stavroulakis, L. D. Larcombe, M. J. Whitcombe, A. Sharma, S. Primrose, G. K. Robinson, S. A. Piletsky, Biomacromolecules 2011, 12, 1067–1071.
- 85L. Ma, S. Feng, C. D. La Fuente-Núñez, R. E. W. Hancock, X. Lu, ACS Appl. Mater. Interfaces 2018, 10, 18450–18457.
- 86S. Fa, Y. Zhao, Bioorg. Med. Chem. Lett. 2019, 29, 978–981.
- 87J. Garcia Lopez, E. V. Piletska, M. J. Whitcombe, J. Czulak, S. A. Piletsky, Chem. Commun. 2019, 55, 2664–2667.
- 88J. de D. Habimana, J. Ji, F. Pi, E. Karangwa, J. Sun, W. Guo, F. Cui, J. Shao, C. Ntakirutimana, X. Sun, Anal. Chim. Acta 2018, 1031, 134–144.
- 89H. Jiang, D. Jiang, J. Shao, X. Sun, Biosens. Bioelectron. 2016, 75, 411–419.
- 90A. Motib, A. Guerreiro, F. Al-Bayati, E. Piletska, I. Manzoor, S. Shafeeq, A. Kadam, O. Kuipers, L. Hiller, T. Cowen, S. Piletsky, P. W. Andrew, H. Yesilkaya, Angew. Chem. Int. Ed. 2017, 56, 16555–16558; Angew. Chem. 2017, 129, 16782–16785.
- 91W. Li, K. Dong, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2016, 55, 8049–8053; Angew. Chem. 2016, 128, 8181–8185.
- 92Y. Lu, J. R. Swartz, Sci. Rep. 2016, 6, 18379.
- 93S. K. Gupta, P. Bajwa, R. Deb, M. M. Chellappa, S. Dey, Clin. Vaccine Immunol. 2014, 21, 261–270.
- 94A. H. López-Yglesias, C. C. Lu, X. Zhao, T. Chou, T. VandenBos, R. K. Strong, K. D. Smith, ImmunoHorizons 2019, 3, 422–432.
- 95M. A. R. Khan, A. R. A. Cardoso, M. G. F. Sales, S. Merino, J. M. Tomas, F. X. Rius, J. Riu, Sens. Actuators B 2017, 244, 732.
- 96
- 96aP. J. Cachia, R. S. Hodges, Pept. Sci. 2003, 71, 141–168;
- 96bW. J. Hartsock, C. Hackbarth, R. S. Hodges, in Handbook of Biologically Active Peptides (Ed.: A. J. Kastin), Elsevier, Amsterdam, 2013, pp. 563–570.
10.1016/B978-0-12-385095-9.00077-4 Google Scholar
- 97L. K. Mydock-McGrane, T. J. Hannan, J. W. Janetka, Expert Opin. Drug Discovery 2017, 12, 711–731.
- 98X. Xue, J. Pan, H. Xie, J. Wang, S. Zhang, React. Funct. Polym. 2009, 69, 159–164.
- 99Z. Wu, J. Hou, Y. Wang, M. Chai, Y. Xiong, W. Lu, J. Pan, Int. J. Pharm. 2015, 496, 1006–1014.
- 100N. Malakooti, C. Alexander, C. Alvarez-Lorenzo, J. Pharm. Sci. 2015, 104, 3386–3394.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.