Benchmark C2H2/CO2 Separation in an Ultra-Microporous Metal–Organic Framework via Copper(I)-Alkynyl Chemistry
Dr. Ling Zhang
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ke Jiang
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Lifeng Yang
College of Chemical and Biological Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Libo Li
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 Shanxi, China
Search for more papers by this authorDr. Enlai Hu
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorDr. Ling Yang
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 Shanxi, China
Search for more papers by this authorDr. Kai Shao
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorProf. Huabin Xing
College of Chemical and Biological Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorProf. Yuanjing Cui
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorProf. Yu Yang
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698 USA
Search for more papers by this authorCorresponding Author
Prof. Guodong Qian
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorDr. Ling Zhang
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Ke Jiang
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Lifeng Yang
College of Chemical and Biological Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Libo Li
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 Shanxi, China
Search for more papers by this authorDr. Enlai Hu
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorDr. Ling Yang
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024 Shanxi, China
Search for more papers by this authorDr. Kai Shao
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorProf. Huabin Xing
College of Chemical and Biological Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorProf. Yuanjing Cui
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorProf. Yu Yang
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Bin Li
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Banglin Chen
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0698 USA
Search for more papers by this authorCorresponding Author
Prof. Guodong Qian
State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Zheda Road #38, Hangzhou, 310027 China
Search for more papers by this authorAbstract
Separation of acetylene from carbon dioxide remains a daunting challenge because of their very similar molecular sizes and physical properties. We herein report the first example of using copper(I)-alkynyl chemistry within an ultra-microporous MOF (CuI@UiO-66-(COOH)2) to achieve ultrahigh C2H2/CO2 separation selectivity. The anchored CuI ions on the pore surfaces can specifically and strongly interact with C2H2 molecule through copper(I)-alkynyl π-complexation and thus rapidly adsorb large amount of C2H2 at low-pressure region, while effectively reduce CO2 uptake due to the small pore sizes. This material thus exhibits the record high C2H2/CO2 selectivity of 185 at ambient conditions, significantly higher than the previous benchmark ZJU-74a (36.5) and ATC-Cu (53.6). Theoretical calculations reveal that the unique π-complexation between CuI and C2H2 mainly contributes to the ultra-strong C2H2 binding affinity and record selectivity. The exceptional separation performance was evidenced by breakthrough experiments for C2H2/CO2 gas mixtures. This work suggests a new perspective to functionalizing MOFs with copper(I)-alkynyl chemistry for highly selective separation of C2H2 over CO2.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202102810-sup-0001-misc_information.pdf7.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Granada, S. B. Karra, S. M. Senkan, Ind. Eng. Chem. Res. 1987, 26, 1901–1905.
- 2C. J. Guo, D. Shen, M. Bulow, Stud. Surf. Sci. Catal. 2001, 135, 2952–2960.
- 3R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238–241.
- 4
- 4aM. Ding, R. W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783–2828;
- 4bW. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2020, 142, 8728–8737;
- 4cR.-B. Lin, S. Xiang, W. Zhou, B. Chen, Chem 2020, 6, 337–363;
- 4dW.-G. Cui, T.-L. Hu, X.-H. Bu, Adv. Mater. 2020, 32, 1806445;
- 4eH. Wang, X. Dong, J. Lin, S. J. Teat, S. Jensen, J. Cure, E. V. Alexandrov, Q. Xia, K. Tan, Q. Wang, D. H. Olson, D. M. Proserpio, Y. J. Chabal, T. Thonhauser, J. Sun, Y. Han, J. Li, Nat. Commun. 2018, 9, 1745;
- 4fY. Belmabkhout, P. M. Bhatt, K. Adil, R. S. Pillai, A. Cadiau, A. Shkurenko, G. Maurin, G. Liu, W. J. Koros, M. Eddaoudi, Nat. Energy 2018, 3, 1059–1066;
- 4gD.-D. Zhou, P. Chen, C. Wang, S.-S. Wang, Y. Du, H. Yan, Z.-M. Ye, C.-T. He, R.-K. Huang, Z.-W. Mo, N.-Y. Huang, J.-P. Zhang, Nat. Mater. 2019, 18, 994–998;
- 4hF. Moreau, I. da Silva, N. H. A. Smail, T. L. Easun, M. Savage, H. G. W. Godfrey, S. F. Parker, P. Manuel, S. Yang, M. Schröder, Nat. Commun. 2017, 8, 14085;
- 4iX. Zhang, L. Li, J.-X. Wang, H.-M. Wen, R. Krishna, H. Wu, W. Zhou, Z.-N. Chen, B. Li, G. Qian, B. Chen, J. Am. Chem. Soc. 2020, 142, 633–640.
- 5
- 5aZ. Shi, Y. Tao, J. Wu, C. Zhang, H. He, L. Long, Y. Lee, T. Li, Y.-B. Zhang, J. Am. Chem. Soc. 2020, 142, 2750–2754;
- 5bY. Jiang, P. Tan, S.-C. Qi, X.-Q. Liu, J.-H. Yan, F. Fan, L.-B. Sun, Angew. Chem. Int. Ed. 2019, 58, 6600–6604; Angew. Chem. 2019, 131, 6672–6676.
- 6H. Yang, F. Peng, C. Dang, Y. Wang, D. Hu, X. Zhao, P. Feng, X. Bu, J. Am. Chem. Soc. 2019, 141, 9808–9812.
- 7
- 7aB. Li, X. Cui, D. O'Nolan, H.-M. Wen, M. Jiang, R. Krishna, H. Wu, R.-B. Lin, Y. S. Chen, D. Yuan, H. Xing, W. Zhou, Q. Ren, G. Qian, M. J. Zaworotko, B. Chen, Adv. Mater. 2017, 29, 1704210;
- 7bJ. Li, L. Jiang, S. Chen, A. Kirchon, B. Li, Y. Li, H.-C. Zhou, J. Am. Chem. Soc. 2019, 141, 3807–3811;
- 7cZ. Zhang, S. B. Peh, Y. Wang, C. Kang, W. Fan, D. Zhao, Angew. Chem. Int. Ed. 2020, 59, 18927–18932; Angew. Chem. 2020, 132, 19089–19094;
- 7dO. T. Qazvini, R. Babarao, S. G. Telfer, Chem. Mater. 2019, 31, 4919–4926.
- 8
- 8aX. Zhang, J.-X. Wang, L. Li, J. Pei, R. Krishna, H. Wu, W. Zhou, G. Qian, B. Chen, B. Li, Angew. Chem. Int. Ed. 2021, 60, 10304–10310;
- 8bL. Zhang, L. Li, E. Hu, L. Yang, K. Shao, L. Yao, K. Jiang, Y. Cui, Y. Yang, B. Li, B. Chen, G. Qian, Adv. Sci. 2020, 7, 1901918;
- 8cA. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 2016, 353, 137–140;
- 8dH. Wang, X. Dong, V. Colombo, Q. Wang, Y. Liu, W. Liu, X. L. Wang, X.-Y. Huang, D. M. Proserpio, A. Sironi, Y. Han, J. Li, Adv. Mater. 2018, 30, 1805088;
- 8eL. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, Science 2018, 362, 443–446;
- 8fY.-S. Bae, C. Y. Lee, K. C. Kim, O. K. Farha, P. Nickias, J. T. Hupp, S. T. Nguyen, R. Q. Snurr, Angew. Chem. Int. Ed. 2012, 51, 1857–1860; Angew. Chem. 2012, 124, 1893–1896.
- 9
- 9aK.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry, M. J. Zaworotko, Chem 2016, 1, 753–765;
- 9bY. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2019, 141, 4130–4136;
- 9cY. Zhang, L. Yang, L. Wang, S. Duttwyler, H. Xing, Angew. Chem. Int. Ed. 2019, 58, 8145–8150; Angew. Chem. 2019, 131, 8229–8234;
- 9dH. Zeng, M. Xie, Y. L. Huang, Y. Zhao, X. J. Xie, J. P. Bai, M. Y. Wan, R. Krishna, W. Lu, D. Li, Angew. Chem. Int. Ed. 2019, 58, 8515–8519; Angew. Chem. 2019, 131, 8603–8607;
- 9eY.-P. Li, Y. Wang, Y.-Y. Xue, H.-P. Li, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, M.-C. Hu, X. Bu, Angew. Chem. Int. Ed. 2019, 58, 13590–13595; Angew. Chem. 2019, 131, 13724–13729;
- 9fL. Yang, L. Yan, Y. Wang, Z. Liu, J. He, Q. Fu, D. Liu, X. Gu, P. Dai, L. Li, X. Zhao, Angew. Chem. Int. Ed. 2021, 60, 4570–4574; Angew. Chem. 2021, 133, 4620–4624;
- 9gO. T. Qazvini, R. Babarao, S. G. Telfer, Nat. Commun. 2021, 12, 197.
- 10
- 10aR.-B. Lin, L. Li, H. Wu, H. Arman, B. Li, R. G. Lin, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 8022–8028;
- 10bL. Zhang, K. Jiang, L. Li, Y.-P. Xia, T.-L. Hu, Y. Yang, Y. Cui, B. Li, B. Chen, G. Qian, Chem. Commun. 2018, 54, 4846–4849.
- 11
- 11aF. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T.-L. Hu, M. O'Keeffe, L. Wang, M. Luo, R.-B. Lin, B. Chen, J. Am. Chem. Soc. 2016, 138, 5678–5684;
- 11bY.-L. Peng, T. Pham, P. Li, T. Wang, Y. Chen, K.-J. Chen, K. A. Forrest, B. Space, P. Cheng, M. J. Zaworotko, Z. Zhang, Angew. Chem. Int. Ed. 2018, 57, 10971–10975; Angew. Chem. 2018, 130, 11137–11141;
- 11cJ. Lee, C. Y. Chuah, J. Kim, Y. Kim, N. Ko, Y. Seo, K. Kim, T. H. Bae, E. Lee, Angew. Chem. Int. Ed. 2018, 57, 7869–7873; Angew. Chem. 2018, 130, 7995–7999;
- 11dJ. Gao, X. Qian, R.-B. Lin, R. Krishna, H. Wu, W. Zhou, B. Chen, Angew. Chem. Int. Ed. 2020, 59, 4396–4400; Angew. Chem. 2020, 132, 4426–4430;
- 11eJ. Pei, K. Shao, J.-X. Wang, H.-M. Wen, Y. Yang, Y. Cui, R. Krishna, B. Li, G. Qian, Adv. Mater. 2020, 32, 1908275;
- 11fZ. Niu, X. Cui, T. Pham, G. Verma, P. C. Lan, C. Shan, H. Xing, K. A. Forrest, S. Suepaul, B. Space, A. Nafady, A. M. Al-Enizi, S. Ma, Angew. Chem. Int. Ed. 2021, 60, 5283–5288; Angew. Chem. 2021, 133, 5343–5348.
- 12
- 12aS. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu, B. Chen, Angew. Chem. Int. Ed. 2010, 49, 4615–4618; Angew. Chem. 2010, 122, 4719–4722;
- 12bS. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, B. Chen, J. Am. Chem. Soc. 2009, 131, 12415–12419;
- 12cJ. Pang, F. Jiang, M. Wu, C. Liu, K. Su, W. Lu, D. Yuan, M. Hong, Nat. Commun. 2015, 6, 7575.
- 13E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606–1610.
- 14
- 14aS. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870–10871;
- 14bA. Ö. Yazaydın, R. Q. Snurr, T.-H. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin, P. Jakubczak, M. Lanuza, D. B. Galloway, J. J. Low, R. R. Willis, J. Am. Chem. Soc. 2009, 131, 18198–18199;
- 14cD. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2009, 106, 20637–20640.
- 15
- 15aH. Lang, A. Jakob, B. Milde, Organometallics 2012, 31, 7661–7693;
- 15bV. W.-W. Yam, K.-L. Yu, K. M.-C. Wong, K.-K. Cheung, Organometallics 2001, 20, 721–726;
- 15cH. Schmidbaur, A. Schier, Organometallics 2010, 29, 2–23;
- 15dV. W.-W. Yam, Acc. Chem. Res. 2002, 35, 555–563.
- 16
- 16aB. Li, Y. Zhang, R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham, B. Space, J. Liu, P. K. Thallapally, J. Liu, M. Chrzanowski, S. Ma, J. Am. Chem. Soc. 2014, 136, 8654–8660;
- 16bS. Aguado, G. Bergeret, C. Daniel, D. Farrusseng, J. Am. Chem. Soc. 2012, 134, 14635–14637;
- 16cM. H. Mohamed, Y. Yang, L. Li, S. Zhang, J. P. Ruffley, A. G. Jarvi, S. Saxena, G. Veser, J. K. Johnson, N. L. Rosi, J. Am. Chem. Soc. 2019, 141, 13003–13007.
- 17
- 17aJ. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850–13851;
- 17bM. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Chem. Mater. 2010, 22, 6632–6640;
- 17cZ. Hu, Y. Peng, Z. Kang, Y. Qian, D. Zhao, Inorg. Chem. 2015, 54, 4862–4868.
- 18M. I. Gonzalez, E. D. Bloch, J. A. Mason, S. J. Teat, J. R. Long, Inorg. Chem. 2015, 54, 2995–3005.
- 19A. M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, X. Pei, O. M. Yaghi, R. J. Behm, J. Am. Chem. Soc. 2019, 141, 5201–5210.
- 20N. B. Muddada, U. Olsbye, G. Leofanti, D. Gianolio, F. Bonino, S. Bordiga, T. Fuglerud, S. Vidotto, A. Marsella, C. Lamberti, Dalton Trans. 2010, 39, 8437–8449.
- 21M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051–1069.
- 22A. Nuhnen, C. Janiak, Dalton Trans. 2020, 49, 10295–10307.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.