A Ge/Carbon Atomic-Scale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability
Zhiwei Yang
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorTing Chen
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorDequan Chen
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorXinyu Shi
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorShan Yang
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorYanjun Zhong
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorYuxia Liu
School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorGongke Wang
School of Materials Science and Engineering, Henan Normal University, XinXiang, 453007 P. R. China
Search for more papers by this authorBenhe Zhong
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorYang Song
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Zhenguo Wu
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Xiaodong Guo
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorZhiwei Yang
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorTing Chen
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorDequan Chen
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorXinyu Shi
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorShan Yang
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorYanjun Zhong
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorYuxia Liu
School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 P. R. China
Search for more papers by this authorGongke Wang
School of Materials Science and Engineering, Henan Normal University, XinXiang, 453007 P. R. China
Search for more papers by this authorBenhe Zhong
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorYang Song
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Zhenguo Wu
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorCorresponding Author
Xiaodong Guo
College of Chemical Engineering, Sichuan University, Chengdu, 610065 P. R. China
Search for more papers by this authorAbstract
The continuous growth of the solid–electrolyte interface (SEI) and material crushing are the fundamental issues that hinder the application of Ge anodes in lithium-ion batteries. Solving Ge deformation crushing during discharge/charge cycles is challenging using conventional carbon coating modification methods. Due to the chemical stability and high melting point of carbon (3500 °C), Ge/carbon hybridization at the atomic level is challenging. By selecting a suitable carbon source and introducing an active medium, we have achieved the Ge/carbon doping at the atom-level, and this Ge/carbon anode shows excellent electrochemical performance. The reversible capacity is maintained at 1127 mAh g−1 after 1000 cycles (2 A g−1 (2–71 cycles), 4 A g−1 (72–1000 cycles)) with a retention of 84 % compared to the second cycle. The thickness of the SEI is only 17.4 nm after 1000 cycles. The excellent electrochemical performance and stable SEI fully reflect the application potential of this material.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202102048-sup-0001-misc_information.pdf1,007.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Armand, J. M. Tarascon, Nature 2008, 451, 652–657;
- 1bX. Li, Y. Qiao, S. Guo, Z. Xu, H. Zhu, X. Zhang, Y. Yuan, P. He, M. Ishida, H. Zhou, Adv. Mater. 2018, 30, 1705197.
- 2
- 2aY. Xiao, Y. F. Zhu, W. Xiang, Z. G. Wu, Y. C. Li, J. Lai, S. Li, E. Wang, Z. G. Yang, C. L. Xu, Angew. Chem. Int. Ed. 2020, 59, 1491–1495; Angew. Chem. 2020, 132, 1507–1511;
- 2bH. Xu, C. Cheng, S. Chu, X. Zhang, J. Wu, L. Zhang, S. Guo, H. Zhou, Adv. Funct. Mater. 2020, 30, 2005164;
- 2cS. Li, Y. M. Liu, Y. C. Zhang, Y. Song, G. K. Wang, Y. X. Liu, Z. G. Wu, B. H. Zhong, Y. J. Zhong, X. D. Guo, J. Power Sources 2021, 485, 229331.
- 3
- 3aY. Fan, X. Chen, D. Legut, Q. Zhang, Energy Storage Mater. 2019, 16, 169–193;
- 3bS. H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, H. K. Liu, Angew. Chem. Int. Ed. 2006, 45, 6896–6899; Angew. Chem. 2006, 118, 7050–7053.
- 4F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater. 2011, 23, 1695–1715.
- 5A. M. Chockla, K. C. Klavetter, C. B. Mullins, B. A. Korgel, ACS Appl. Mater. Interfaces 2012, 4, 4658–4664.
- 6N. Nitta, G. Yushin, Part. Part. Syst. Charact. 2014, 31, 317–336.
- 7X. Liu, X. Y. Wu, B. Chang, K. X. Wang, Energy Storage Mater. 2020, 30, 146–169.
- 8S. Wu, C. Han, J. Iocozzia, M. Lu, R. Ge, R. Xu, Z. Lin, Angew. Chem. Int. Ed. 2016, 55, 7898–7922; Angew. Chem. 2016, 128, 8028–8054.
- 9
- 9aG. Song, J. Y. Cheong, C. Kim, L. Luo, C. Hwang, S. Choi, J. Ryu, S. Kim, W. J. Song, H. K. Song, C. Wang, I. D. Kim, S. Park, Nat. Commun. 2019, 10, 2364;
- 9bX. Chen, X. Q. Zhang, H. R. Li, Q. Zhang, Batteries Supercaps 2019, 2, 128–131;
- 9cJ. Wu, N. Luo, S. Huang, W. Yang, M. Wei, J. Mater. Chem. A 2019, 7, 4574–4580;
- 9dX. Ou, G. Zhang, S. Zhang, X. Tong, Y. Tang, Energy Storage Mater. 2020, 28, 357–363;
- 9eH. Su, A. A. Barragan, L. Geng, D. Long, L. Ling, K. N. Bozhilov, L. Mangolini, J. Guo, Angew. Chem. Int. Ed. 2017, 56, 10780–10785; Angew. Chem. 2017, 129, 10920–10925.
- 10
- 10aA. K. Shukla, T. Prem Kumar, WIREs Energy Environ. 2013, 2, 14–30;
- 10bH. Zhang, X. Yu, P. V. Braun, Nat. Nanotechnol. 2011, 6, 277–281;
- 10cS. Chabi, C. Peng, D. Hu, Y. Zhu, Adv. Mater. 2014, 26, 2440–2445;
- 10dM. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, J. Cho, Angew. Chem. Int. Ed. 2011, 50, 9647–9650; Angew. Chem. 2011, 123, 9821–9824.
- 11
- 11aS. H. Woo, S. J. Choi, J. H. Park, W. S. Yoon, S. W. Hwang, D. Whang, J. Electrochem. Soc. 2013, 160, A112–A116;
- 11bH. Lee, M. G. Kim, C. H. Choi, Y. K. Sun, C. S. Yoon, J. Cho, J. Phys. Chem. B 2005, 109, 20719–20723.
- 12
- 12aR. A. DiLeo, S. Frisco, M. J. Ganter, R. E. Rogers, R. P. Raffaelle, B. J. Landi, J. Phys. Chem. C 2011, 115, 22609–22614;
- 12bJ. Cheng, J. Du, CrystEngComm 2012, 14, 397–400;
- 12cH. Lee, H. Kim, S. G. Doo, J. Cho, J. Electrochem. Soc. 2007, 154, A343;
- 12dW. Zhang, Z. X. Chi, W. X. Mao, R. W. Lv, A. M. Cao, L. J. Wan, Angew. Chem. Int. Ed. 2014, 53, 12776–12780; Angew. Chem. 2014, 126, 12990–12994.
- 13C. Jiang, L. Xiang, S. Miao, L. Shi, D. Xie, J. Yan, Z. Zheng, X. Zhang, Y. Tang, Adv. Mater. 2020, 32, 1908470.
- 14
- 14aK. H. Seng, M. H. Park, Z. P. Guo, H. K. Liu, J. Cho, Angew. Chem. Int. Ed. 2012, 51, 5657–5661; Angew. Chem. 2012, 124, 5755–5759;
- 14bD. T. Ngo, H. T. Le, C. Kim, J. Y. Lee, J. G. Fisher, I. D. Kim, C. J. Park, Energy Environ. Sci. 2015, 8, 3577–3588;
- 14cH. S. Choe, S. J. Kim, M. C. Kim, D. M. Kim, G. H. Lee, S. B. Han, D. H. Kwak, K. W. Park, RSC Adv. 2016, 6, 72926–72932.
- 15C. M. Hwang, J. W. Park, Thin Solid Films 2010, 518, 6590–6597.
- 16
- 16aD. T. Ngo, R. S. Kalubarme, H. T. Le, J. G. Fisher, C. N. Park, I. D. Kim, C. J. Park, Adv. Funct. Mater. 2014, 24, 5291–5298;
- 16bY. Xiao, M. Cao, L. Ren, C. Hu, Nanoscale 2012, 4, 7469–7474.
- 17Y. Zhang, N. Du, Y. Chen, Y. Lin, J. Jiang, Y. He, Y. Lei, D. Yang, Nanoscale 2018, 10, 5626–5633.
- 18Y. Wang, S. Luo, M. Chen, L. Wu, Adv. Funct. Mater. 2020, 30, 2000373.
- 19
- 19aM. P. Hernández, M. H. Farías, F. F. Castillón, J. A. Díaz, M. Avalos, L. Ulloa, J. A. Gallegos, H. Yee-Madeiros, Appl. Surf. Sci. 2011, 257, 5007–5011;
- 19bK. Kim, H. Seo, H. S. Kim, H. S. Lee, J. H. Kim, Electrochim. Acta 2020, 340, 135952.
- 20
- 20aF. C. Marques, J. Vilcarromero, R. G. Lacerda, Appl. Phys. A 2000, 71, 633–637;
- 20bY. Setsuhara, K. Cho, M. Shiratani, M. Sekine, M. Hori, Thin Solid Films 2010, 518, 6492–6495.
- 21X. Wang, L. Fan, D. Gong, J. Zhu, Q. Zhang, B. Lu, Adv. Funct. Mater. 2016, 26, 1104–1111.
- 22S. Yoon, C. M. Park, H. J. Sohn, Electrochem. Solid-State Lett. 2008, 11, A42.
- 23K. Hemalatha, A. S. Prakash, K. Guruprakash, M. Jayakumar, J. Mater. Chem. A 2014, 2, 1757–1766.
- 24
- 24aH. Shinotsuka, S. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 2015, 47, 871–888;
- 24bS. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 2011, 43, 689–713.
- 25
- 25aP. Verma, P. Maire, P. Novák, Electrochim. Acta 2010, 55, 6332–6341;
- 25bB. Philippe, R. Dedryvere, M. Gorgoi, H. Rensmo, D. Gonbeau, K. Edstrom, J. Am. Chem. Soc. 2013, 135, 9829–9842.
- 26H. Xu, K. Jiang, X. Zhang, X. Zhang, S. Guo, H. Zhou, ACS Appl. Mater. Interfaces 2019, 11, 26817–26823.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.