Chiral Superatomic Nanoclusters Ag47 Induced by the Ligation of Amino Acids
Wen-Di Liu
Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorJia-Qi Wang
Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorShang-Fu Yuan
Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xi Chen
Department of Applied Physics, Aalto University, Otakaari 1, 02150 Espoo, Finland
Search for more papers by this authorCorresponding Author
Prof. Dr. Quan-Ming Wang
Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorWen-Di Liu
Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorJia-Qi Wang
Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorShang-Fu Yuan
Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xi Chen
Department of Applied Physics, Aalto University, Otakaari 1, 02150 Espoo, Finland
Search for more papers by this authorCorresponding Author
Prof. Dr. Quan-Ming Wang
Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorAbstract
Silver nanoclusters containing Ag0 atoms protected by amino acids were synthesized and characterized. Chiral superatomic silver nanoclusters [Ag47L12(C≡CtBu)16]BF4 (L=l-/d-valine or l-/d-isoleucine) have been prepared by reducing AgC≡CtBu and amino acids (AAs) with NaBH4. Single crystal X-ray diffraction revealed that these clusters have T symmetry, and the Ag47 metal kernel can be viewed as a tetracapped truncated tetrahedron (Ag17) surrounded with six W-shaped Ag5 units. The clusters are homochiral as evidenced by CD measurements. As for the strong CD signals, large contributions are found from the occupied Ag s,p states (superatomic D states) near the Fermi level. Electron counting revealed that these clusters are 18-electron systems, suggesting they are superatomic clusters. The superatomic nature with a 1S21P61D10 configuration was supported by DFT calculations. This work paves the way of taking AAs as facile chiral induction agents for the synthesis of metal nanoclusters.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202100972-sup-0001-misc_information.pdf1.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Lei, X.-K. Wan, S.-F. Yuan, Z.-J. Guan, Q.-M. Wang, Acc. Chem. Res. 2018, 51, 2465–2474.
- 2X. Gao, B. Han, X. Yang, Z. Tang, J. Am. Chem. Soc. 2019, 141, 13700–13707.
- 3Q. Tang, G. Hu, V. Fung, D. Jiang, Acc. Chem. Res. 2018, 51, 2793–2802.
- 4X. Kang, M. Zhu, Chem. Mater. 2019, 31, 9939–9969.
- 5R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346–10413.
- 6C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos, A. J. Welch, J. Chem. Soc. Chem. Commun. 1981, 201.
- 7B. K. Teo, X. Shi, H. Zhang, J. Am. Chem. Soc. 1992, 114, 2743–2745.
- 8X.-K. Wan, Z.-W. Lin, Q.-M. Wang, J. Am. Chem. Soc. 2012, 134, 14750–14752.
- 9X.-K. Wan, S.-F. Yuan, Z.-W. Lin, Q.-M. Wang, Angew. Chem. Int. Ed. 2014, 53, 2923–2926; Angew. Chem. 2014, 126, 2967–2970.
- 10J. Chen, Q.-F. Zhang, T. A. Bonaccorso, P. G. Williard, L.-S. Wang, J. Am. Chem. Soc. 2014, 136, 92–95.
- 11M. Sugiuchi, Y. Shichibu, K. Konishi, Angew. Chem. Int. Ed. 2018, 57, 7855–7859; Angew. Chem. 2018, 130, 7981–7985.
- 12C. Zeng, H. Qian, T. Li, G. Li, N. L. Rosi, B. Yoon, R. N. Barnett, R. L. Whetten, U. Landman, R. Jin, Angew. Chem. Int. Ed. 2012, 51, 13114–13118; Angew. Chem. 2012, 124, 13291–13295.
- 13Y. Negishi, T. Nakazaki, S. Malola, S. Takano, Y. Niihori, W. Kurashige, S. Yamazoe, T. Tsukuda, H. Häkkinen, J. Am. Chem. Soc. 2015, 137, 1206–1212.
- 14P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science 2007, 318, 430–433.
- 15J.-Y. Liu, F. Alkan, Z. Wang, Z.-Y. Zhang, M. Kurmoo, Z. Yan, Q.-Q. Zhao, C. M. Aikens, C.-H. Tung, D. Sun, Angew. Chem. Int. Ed. 2019, 58, 195–199; Angew. Chem. 2019, 131, 201–205.
- 16N. Yan, N. Xia, L. Liao, M. Zhu, F. Jin, R. Jin, Z. Wu, Sci. Adv. 2018, 4, eaat7259.
- 17Y. Yu, Z. Luo, D. M. Chevrier, D. T. Leong, P. Zhang, D. Jiang, J. Xie, J. Am. Chem. Soc. 2014, 136, 1246–1249.
- 18S. Yang, J. Chai, Y. Song, X. Kang, H. Sheng, H. Chong, M. Zhu, J. Am. Chem. Soc. 2015, 137, 10033–10035.
- 19M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin, J. Am. Chem. Soc. 2008, 130, 5883–5885.
- 20C. Zeng, Y. Chen, K. Kirschbaum, K. J. Lambright, R. Jin, Science 2016, 354, 1580–1584.
- 21P. Maity, H. Tsunoyama, M. Yamauchi, S. Xie, T. Tsukuda, J. Am. Chem. Soc. 2011, 133, 20123–20125.
- 22X.-K. Wan, S.-F. Yuan, Q. Tang, D. Jiang, Q.-M. Wang, Angew. Chem. Int. Ed. 2015, 54, 5977–5980; Angew. Chem. 2015, 127, 6075–6078.
- 23Z.-J. Guan, J.-L. Zeng, Z.-A. Nan, X.-K. Wan, Y.-M. Lin, Q.-M. Wang, Sci. Adv. 2016, 2, e1600323.
- 24J.-J. Li, Z.-J. Guan, Z. Lei, F. Hu, Q.-M. Wang, Angew. Chem. Int. Ed. 2019, 58, 1083–1087; Angew. Chem. 2019, 131, 1095–1099.
- 25J.-Q. Wang, S. Shi, R.-L. He, S.-F. Yuan, G.-Y. Yang, G.-J. Liang, Q.-M. Wang, J. Am. Chem. Soc. 2020, 142, 18086–18092.
- 26F. Hu, J.-J. Li, Z.-J. Guan, S.-F. Yuan, Q.-M. Wang, Angew. Chem. Int. Ed. 2020, 59, 5312–5315; Angew. Chem. 2020, 132, 5350–5353.
- 27Z.-J. Guan, F. Hu, J.-J. Li, Z.-R. Wen, Y.-M. Lin, Q.-M. Wang, J. Am. Chem. Soc. 2020, 142, 2995–3001.
- 28B.-L. Han, Z. Liu, L. Feng, Z. Wang, R. K. Gupta, C. M. Aikens, C.-H. Tung, D. Sun, J. Am. Chem. Soc. 2020, 142, 5834–5841.
- 29X.-S. Han, X. Luan, H.-F. Su, J.-J. Li, S.-F. Yuan, Z. Lei, Y. Pei, Q.-M. Wang, Angew. Chem. Int. Ed. 2020, 59, 2309–2312; Angew. Chem. 2020, 132, 2329–2332.
- 30S.-F. Yuan, C.-Q. Xu, J. Li, Q.-M. Wang, Angew. Chem. Int. Ed. 2019, 58, 5906–5909; Angew. Chem. 2019, 131, 5967–5970.
- 31S.-F. Yuan, Z.-J. Guan, W.-D. Liu, Q.-M. Wang, Nat. Commun. 2019, 10, 4032.
- 32M.-M. Zhang, K. Li, S.-Q. Zang, Adv. Opt. Mater. 2020, 8, 1902152.
- 33S. Xie, H. Tsunoyama, W. Kurashige, Y. Negishi, T. Tsukuda, ACS Catal. 2012, 2, 1519–1523.
- 34X.-K. Wan, J.-Q. Wang, Z.-A. Nan, Q.-M. Wang, Sci. Adv. 2017, 3, e1701823.
- 35L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, F. Naso, Nat. Mater. 2008, 7, 412–417.
- 36Y. Yang, X.-L. Pei, Q.-M. Wang, J. Am. Chem. Soc. 2013, 135, 16184–16191.
- 37C. Hao, L. Xu, W. Ma, X. Wu, L. Wang, H. Kuang, C. Xu, Adv. Funct. Mater. 2015, 25, 5816–5822.
- 38W. Ma, L. Xu, A. F. de Moura, X. Wu, H. Kuang, C. Xu, N. A. Kotov, Chem. Rev. 2017, 117, 8041–8093.
- 39L. Shi, L. Zhu, J. Guo, L. Zhang, Y. Shi, Y. Zhang, K. Hou, Y. Zheng, Y. Zhu, J. Lv, S. Liu, Z. Tang, Angew. Chem. Int. Ed. 2017, 56, 15397–15401; Angew. Chem. 2017, 129, 15599–15603.
- 40H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, K. T. Nam, Nature 2018, 556, 360–365.
- 41L. Xu, M. Sun, P. Cheng, R. Gao, H. Wang, W. Ma, X. Shi, C. Xu, H. Kuang, Adv. Funct. Mater. 2018, 28, 1707237.
- 42W. Ma, L. Xu, L. Wang, C. Xu, H. Kuang, Adv. Funct. Mater. 2019, 29, 1805512.
- 43X.-T. Kong, L. V. Besteiro, Z. Wang, A. O. Govorov, Adv. Mater. 2020, 32, 1801790.
- 44T. Omoda, S. Takano, T. Tsukuda, Small 2020, 2001439.
- 45X. Zhao, S.-Q. Zang, X. Chen, Chem. Soc. Rev. 2020, 49, 2481–2503.
- 46Y. Li, T. Higaki, X. Du, R. Jin, Adv. Mater. 2020, 32, 1905488.
- 47S. Knoppe, A. C. Dharmaratne, E. Schreiner, A. Dass, T. Bürgi, J. Am. Chem. Soc. 2010, 132, 16783–16789.
- 48S. Knoppe, R. Azoulay, A. Dass, T. Bürgi, J. Am. Chem. Soc. 2012, 134, 20302–20305.
- 49S. Knoppe, I. Dolamic, A. Dass, T. Bürgi, Angew. Chem. Int. Ed. 2012, 51, 7589–7591; Angew. Chem. 2012, 124, 7709–7711.
- 50C. Zeng, T. Li, A. Das, N. L. Rosi, R. Jin, J. Am. Chem. Soc. 2013, 135, 10011–10013.
- 51S. Knoppe, O. A. Wong, S. Malola, H. Häkkinen, T. Bürgi, T. Verbiest, C. J. Ackerson, J. Am. Chem. Soc. 2014, 136, 4129–4132.
- 52Y. Zhu, H. Wang, K. Wan, J. Guo, C. He, Y. Yu, L. Zhao, Y. Zhang, J. Lv, L. Shi, R. Jin, X. Zhang, X. Shi, Z. Tang, Angew. Chem. Int. Ed. 2018, 57, 9059–9063; Angew. Chem. 2018, 130, 9197–9201.
- 53C. A. Hosier, I. D. Anderson, C. J. Ackerson, Nanoscale 2020, 12, 6239–6242.
- 54L.-Y. Yao, T. K.-M. Lee, V. W.-W. Yam, J. Am. Chem. Soc. 2016, 138, 7260–7263.
- 55S. Takano, T. Tsukuda, J. Phys. Chem. Lett. 2016, 7, 4509–4513.
- 56H. Yang, J. Yan, Y. Wang, G. Deng, H. Su, X. Zhao, C. Xu, B. K. Teo, N. Zheng, J. Am. Chem. Soc. 2017, 139, 16113–16116.
- 57Y. Jin, S. Li, Z. Han, B.-J. Yan, H.-Y. Li, X.-Y. Dong, S.-Q. Zang, Angew. Chem. Int. Ed. 2019, 58, 12143–12148; Angew. Chem. 2019, 131, 12271–12276.
- 58J.-Q. Wang, Z.-J. Guan, W.-D. Liu, Y. Yang, Q.-M. Wang, J. Am. Chem. Soc. 2019, 141, 2384–2390.
- 59M.-M. Zhang, X.-Y. Dong, Z.-Y. Wang, H.-Y. Li, S.-J. Li, X. Zhao, S.-Q. Zang, Angew. Chem. Int. Ed. 2020, 59, 10052–10058; Angew. Chem. 2020, 132, 10138–10144.
- 60S. Li, X.-S. Du, B. Li, J.-Y. Wang, G.-P. Li, G.-G. Gao, S.-Q. Zang, J. Am. Chem. Soc. 2018, 140, 594–597.
- 61B. Li, Y.-J. Kong, S. Li, X.-F. Liu, P. Luo, S.-Q. Zang, Part. Part. Syst. Charact. 2019, 36, 1900069.
- 62Z. Han, X.-Y. Dong, P. Luo, S. Li, Z.-Y. Wang, S.-Q. Zang, T. C. W. Mak, Sci. Adv. 2020, 6, eaay0107.
- 63Crystal data for Ag47-LVal: a=21.8732(3), b=22.3087(4), c=54.5225(15) Å, α=90°, β=90°, γ=90°, V=26604.9(9) Å3, space group P212121, Z=4, T=173.00(10) K, 90 372 reflections measured, 39 388 unique (Rint=0.0960), final R1=0.0639, wR2=0.1573 for 29 930 observed reflections [I>2σ(I)]. Flack factor=0.008(11). Crystal data for Ag47-DVal: a=21.7915(4), b=22.0857(7), c=54.0249(13) Å, α=90°, β=90°, γ=90°, V=26001.2(11) Å3, space group P212121, Z=4, T=100.00(15) K, 151 891 reflections measured, 39 311 unique (Rint=0.1088), final R1=0.0702, wR2=0.1727 for 29 505 observed reflections [I>2σ(I)]. Flack factor=0.055(11). Crystal data for Ag47-LIle: a=35.3068(5), b=35.3068(5), c=22.1161(4) Å, α=90°, β=90°, γ=90°, V=27569.3(9) Å3, space group P42212, Z=4, T=99.98(10) K, 69 757 reflections measured, 23 223 unique (Rint=0.0719), final R1=0.0581, wR2=0.1368 for 18 982 observed reflections [I>2σ(I)]. Flack factor=0.055(12). Crystal data for Ag47-DIle: a=29.7534(4), b=29.7534(4), c=29.7534(4) Å, α=90°, β=90°, γ=90°, V=26339.6(11) Å3, space group F23, Z=4, T=173.00(10) K, 14396 reflections measured, 3609 unique (Rint=0.0506), final R1=0.0400, wR2=0.1023 for 3207 observed reflections [I>2σ(I)]. Flack factor=0.017(13). Deposition Numbers 2055942, 2055943, 2055944, and 2055945 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 64N. Amdursky, M. M. Stevens, ChemPhysChem 2015, 16, 2768–2774.
- 65Y. Yanagimoto, Y. Negishi, H. Fujihara, T. Tsukuda, J. Phys. Chem. B 2006, 110, 11611–11614.
- 66E. S. Andreiadis, M. R. Vitale, N. Mézailles, X. Le Goff, P. Le Floch, P. Y. Toullec, V. Michelet, Dalton Trans. 2010, 39, 10608.
- 67Q. Xu, S. Kumar, S. Jin, H. Qian, M. Zhu, R. Jin, Small 2014, 10, 1008–1014.
- 68Y. Yang, Q. Zhang, Z.-J. Guan, Z.-A. Nan, J.-Q. Wang, T. Jia, W.-W. Zhan, Inorg. Chem. 2019, 58, 3670–3675.
- 69Y. Zhu, J. Guo, X. Qiu, S. Zhao, Z. Tang, Acc. Mater. Res. 2021, 2, 21–35.
- 70H. Yoshida, M. Ehara, U. D. Priyakumar, T. Kawai, T. Nakashima, Chem. Sci. 2020, 11, 2394–2400.
- 71J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. K. H. Madsen, R. M. Nieminen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. S. Thygesen, K. W. Jacobsen, J. Phys. Condens. Matter 2010, 22, 253202.
- 72J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 73A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 2009, 102, 073005.
- 74M. Kuisma, A. Sakko, T. P. Rossi, A. H. Larsen, J. Enkovaara, L. Lehtovaara, T. T. Rantala, Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 115431.
- 75E. Makkonen, T. P. Rossi, A. H. Larsen, O. Lopez-Acevedo, P. Rinke, M. Kuisma, X. Chen, J. Chem. Phys. 154, 114102.
- 76T. P. Rossi, M. Kuisma, M. J. Puska, R. M. Nieminen, P. Erhart, J. Chem. Theory Comput. 2017, 13, 4779–4790.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.