Synthesis and Characterization of Water Stable Uranyl(V) Complexes
Radmila Faizova
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorFarzaneh Fadaei-Tirani
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorAnne-Sophie Chauvin
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Marinella Mazzanti
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorRadmila Faizova
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorFarzaneh Fadaei-Tirani
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorAnne-Sophie Chauvin
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Marinella Mazzanti
Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
Search for more papers by this authorAbstract
The importance of uranyl(V) (UO2+) species associated with environmental and geologic applications is becoming increasingly evident, but the tendency of the uranyl(V) cation to disproportionate in water has prevented the isolation of stable complexes. Here we demonstrate that in the presence of the tridentate complexing dipicolinate (dpa2−), a ligand highly abundant in soil, the uranyl(V) species can be stabilized and isolated in anoxic basic water. Stable uranyl(V) dipicolinate complexes are readily formed from the reduction of the uranyl(VI) analogue both in organic solution and in basic water, and their solution and solid-state structure were determined. A bis-dpa UVO2+ complex was obtained from water at pH 10, while at higher pH values, a trinuclear mono-dpa cation-cation complex was isolated. These results present the second ever isolated water stable uranyl(V) complex. Moreover, we demonstrate that dipicolinate complexes of UVIO22+, UVO2+ and UIV are strongly luminescent with a signature characteristic of each oxidation state. This provides unique examples of luminescent UV and UIV compounds.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202016123-sup-0001-misc_information.pdf5.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. E. Cowie, J. M. Purkis, J. Austin, J. B. Love, P. L. Arnold, Chem. Rev. 2019, 119, 10595–10637;
- 1bS. Fortier, T. W. Hayton, Coord. Chem. Rev. 2010, 254, 197–214;
- 1cS. A. Cumberland, G. Douglas, K. Grice, J. W. Moreau, Earth Sci. Rev. 2016, 159, 160–185.
- 2E. J. Schofield, H. Veeramani, J. O. Sharp, E. Suvorova, R. Bernier-Latmani, A. Mehta, J. Stahlman, S. M. Webb, D. L. Clark, S. D. Conradson, E. S. Ilton, J. R. Bargar, Environ. Sci. Technol. 2008, 42, 7898–7904.
- 3S. E. Bone, J. J. Dynes, J. Cliff, J. R. Bargar, Proc. Natl. Acad. Sci. USA 2017, 114, 711–716.
- 4
- 4aD. R. Lovley, E. J. P. Phillips, Y. A. Gorby, E. R. Landa, Nature 1991, 350, 413–416;
- 4bD. M. Singer, S. M. Chatman, E. S. Ilton, K. M. Rosso, J. F. Banfield, G. A. Waychunas, Environ. Sci. Technol. 2012, 46, 3821–3830;
- 4cD. L. Jones, M. B. Andrews, A. N. Swinburne, S. W. Botchway, A. D. Ward, J. R. Lloyd, L. S. Natrajan, Chem. Sci. 2015, 6, 5133–5138;
- 4dL. S. Natrajan, A. N. Swinburne, M. B. Andrews, S. Randall, S. L. Heath, Coord. Chem. Rev. 2014, 266, 171–193.
- 5
- 5aP. C. Burns, R. J. Finch, Am. Mineral. 1999, 84, 1456–1460;
- 5bP. L. Arnold, J. B. Love, D. Patel, Coord. Chem. Rev. 2009, 253, 1973–1978;
- 5cJ. C. Renshaw, L. J. C. Butchins, F. R. Livens, I. May, J. M. Charnock, J. R. Lloyd, Environ. Sci. Technol. 2005, 39, 5657–5660;
- 5dE. S. Ilton, A. Haiduc, C. L. Cahill, A. R. Felmy, Inorg. Chem. 2005, 44, 2986–2988;
- 5eE. S. Ilton, J. S. L. Pacheco, J. R. Bargar, Z. Shi, J. Liu, L. Kovarik, M. H. Engelhard, A. R. Felmy, Environ. Sci. Technol. 2012, 46, 9428–9436;
- 5fE. S. Ilton, J.-F. Boily, E. C. Buck, F. N. Skomurski, K. M. Rosso, C. L. Cahill, J. R. Bargar, A. R. Felmy, Environ. Sci. Technol. 2010, 44, 170–176;
- 5gC. Dewey, D. Sokaras, T. Kroll, J. R. Bargar, S. Fendorf, Environ. Sci. Technol. 2020, 54, 6021–6030;
- 5hG. F. Vettese, K. Morris, L. S. Natrajan, S. Shaw, T. Vitova, J. Galanzew, D. L. Jones, J. R. Lloyd, Environ. Sci. Technol. 2020, 54, 2268–2276.
- 6
- 6aL. Natrajan, F. Burdet, J. Pecaut, M. Mazzanti, J. Am. Chem. Soc. 2006, 128, 7152–7153;
- 6bJ. C. Berthet, G. Siffredi, P. Thuery, M. Ephritikhine, Chem. Commun. 2006, 3184–3186;
- 6cM. B. Jones, A. J. Gaunt, Chem. Rev. 2013, 113, 1137–1198;
- 6dP. L. Arnold, D. Patel, C. Wilson, J. B. Love, Nature 2008, 451, 315–318;
- 6eK. Takao, S. Tsushima, S. Takao, A. C. Scheinost, G. Bernhard, Y. Ikeda, C. Hennig, Inorg. Chem. 2009, 48, 9602–9604;
- 6fP. Horeglad, G. Nocton, Y. Filinchuk, J. Pecaut, M. Mazzanti, Chem. Commun. 2009, 1843–1845;
- 6gG. Nocton, P. Horeglad, V. Vetere, J. Pécaut, L. Dubois, P. Maldivi, N. M. Edelstein, M. Mazzanti, J. Am. Chem. Soc. 2010, 132, 495–508;
- 6hV. Mougel, J. Pecaut, M. Mazzanti, Chem. Commun. 2012, 48, 868–870;
- 6iT. W. Hayton, G. Wu, J. Am. Chem. Soc. 2008, 130, 2005–2014;
- 6jT. W. Hayton, G. Wu, Inorg. Chem. 2008, 47, 7415–7423;
- 6kP. L. Arnold, B. E. Cowie, M. Suvova, M. Zegke, N. Magnani, E. Colineau, J. C. Griveau, R. Caciuffo, J. B. Love, Angew. Chem. Int. Ed. 2017, 56, 10775–10779; Angew. Chem. 2017, 129, 10915–10919;
- 6lP. L. Arnold, E. Hollis, G. S. Nichol, J. B. Love, J. C. Griveau, R. Caciuffo, N. Magnani, L. Maron, L. Castro, A. Yahia, S. O. Odoh, G. Schreckenbach, J. Am. Chem. Soc. 2013, 135, 3841–3854;
- 6mP. L. Arnold, A. F. Pecharman, E. Hollis, A. Yahia, L. Maron, S. Parsons, J. B. Love, Nat. Chem. 2010, 2, 1056–1061;
- 6nV. Mougel, P. Horeglad, G. Nocton, J. Pécaut, M. Mazzanti, Chem. Eur. J. 2010, 16, 14365–14377;
- 6oL. Chatelain, V. Mougel, J. Pécaut, M. Mazzanti, Chem. Sci. 2012, 3, 1075–1079;
- 6pV. Mougel, P. Horeglad, G. Nocton, J. Pecaut, M. Mazzanti, Angew. Chem. Int. Ed. 2009, 48, 8477–8480; Angew. Chem. 2009, 121, 8629–8632;
- 6qG. Nocton, P. Horeglad, J. Pécaut, M. Mazzanti, J. Am. Chem. Soc. 2008, 130, 16633–16645;
- 6rF. Burdet, J. Pecaut, M. Mazzanti, J. Am. Chem. Soc. 2006, 128, 16512–16513.
- 7
- 7aA. Kumar, D. Lionetti, V. W. Day, J. D. Blakemore, J. Am. Chem. Soc. 2020, 142, 3032–3041;
- 7bT. K. Ghosh, P. Mahapatra, M. G. B. Drew, A. Franconetti, A. Frontera, A. Ghosh, Chem. Eur. J. 2020, 26, 1612–1623;
- 7cM. Zegke, X. B. Zhang, I. Pidchenko, J. A. Hlina, R. M. Lord, J. Purkis, G. S. Nichol, N. Magnani, G. Schreckenbach, T. Vitova, J. B. Love, P. L. Arnold, Chem. Sci. 2019, 10, 9740–9751;
- 7dJ. J. Kiernicki, M. Zeller, S. C. Bart, Angew. Chem. Int. Ed. 2017, 56, 1097–1100; Angew. Chem. 2017, 129, 1117–1120;
- 7eD. D. Schnaars, G. Wu, T. W. Hayton, J. Am. Chem. Soc. 2009, 131, 17532–17533;
- 7fJ. J. Kiernicki, D. P. Cladis, P. E. Fanwick, M. Zeller, S. C. Bart, J. Am. Chem. Soc. 2015, 137, 11115–11125.
- 8
- 8aR. J. Abergel, W. A. de Jong, G. J. P. Deblonde, P. D. Dau, I. Captain, T. M. Eaton, J. W. Jian, M. J. van Stipclonk, J. Martens, G. Berden, J. Oomens, J. K. Gibson, Inorg. Chem. 2017, 56, 12930–12937;
- 8bY. Gong, W. A. de Jong, J. K. Gibson, J. Am. Chem. Soc. 2015, 137, 5911–5915.
- 9
- 9aJ. L. Brown, C. C. Mokhtarzadeh, J. M. Lever, G. Wu, T. W. Hayton, Inorg. Chem. 2011, 50, 5105–5112;
- 9bB. E. Cowie, G. S. Nichol, J. B. Love, P. L. Arnold, Chem. Commun. 2018, 54, 3839–3842;
- 9cN. L. Bell, B. Shaw, P. L. Arnold, J. B. Love, J. Am. Chem. Soc. 2018, 140, 3378–3384;
- 9dJ. R. Pankhurst, N. L. Bell, M. Zegke, L. N. Platts, C. A. Lamfsus, L. Maron, L. S. Natrajan, S. Sproules, P. L. Arnold, J. B. Love, Chem. Sci. 2017, 8, 108–116.
- 10J. Selbin, J. D. Ortego, Chem. Rev. 1969, 69, 657–671.
- 11
- 11aK. A. Kraus, F. Nelson, J. Am. Chem. Soc. 1949, 71, 2517–2522;
- 11bA. Ekstrom, Inorg. Chem. 1974, 13, 2237–2241.
- 12
- 12aD. Ferri, I. Grenthe, F. Salvatore, Inorg. Chem. 1983, 22, 3162–3165;
- 12bT. I. Docrat, J. F. W. Mosselmans, J. M. Charnock, M. W. Whiteley, D. Collison, F. R. Livens, C. Jones, M. J. Edmiston, Inorg. Chem. 1999, 38, 1879–1882;
- 12cD. W. Wester, J. C. Sullivan, Inorg. Chem. 1980, 19, 2838–2840;
- 12dK. Mizuoka, I. Grenthe, Y. Ikeda, Inorg. Chem. 2005, 44, 4472–4474;
- 12eA. Ikeda, C. Hennig, S. Tsushima, K. Takao, Y. Ikeda, A. C. Scheinost, G. Bernhard, Inorg. Chem. 2007, 46, 4212–4219.
- 13R. Faizova, R. Scopelliti, A. S. Chauvin, M. Mazzanti, J. Am. Chem. Soc. 2018, 140, 13554–13557.
- 14R. Faizova, F. Fadaei-Tirani, R. Bernier-Latmani, M. Mazzanti, Angew. Chem. Int. Ed. 2020, 59, 6756–6759; Angew. Chem. 2020, 132, 6822–6825.
- 15
- 15aM. Sundararajan, R. S. Assary, I. H. Hillier, D. J. Vaughan, J. Chem. Soc. Dalton Trans. 2011, 40, 11156–11163;
- 15bH. Steele, R. J. Taylor, Inorg. Chem. 2007, 46, 6311–6318.
- 16A. Pellissier, Y. Bretonniere, N. Chatterton, J. Pecaut, P. Delangle, M. Mazzanti, Inorg. Chem. 2007, 46, 3714–3725.
- 17
- 17aB. Masci, P. Thuery, Polyhedron 2005, 24, 229–237;
- 17bA. Cousson, J. Proust, E. N. Rizkalla, Acta Crystallogr. Sect. C 1991, 47, 2065–2069;
- 17cA. Immirzi, G. Bombieri, S. Degetto, G. Marangoni, Acta Crystallogr. Sect. B 1975, 31, 1023–1028.
- 18
- 18aC. Xu, G. X. Tian, S. J. Teat, L. F. Rao, Inorg. Chem. 2013, 52, 2750–2756;
- 18bG. X. Tian, L. F. Rao, S. J. Teat, Inorg. Chem. 2009, 48, 10158–10164.
- 19J. I. Friese, K. L. Nash, M. P. Jensen, J. C. Sullivan, Radiochim. Acta 2001, 89, 35–41.
- 20
- 20aM. Y. Alyapyshev, V. A. Babain, L. I. Tkachenko, I. I. Eliseev, A. V. Didenko, M. L. Petrov, Solvent Extr. Ion Exch. 2011, 29, 619–636;
- 20bJ. L. Lapka, A. Paulenova, M. Y. Alyapyshev, V. A. Babain, R. S. Herbst, J. D. Law, Radiochim. Acta 2009, 97, 291–296.
- 21S. K. Cary, S. S. Galley, M. L. Marsh, D. L. Hobart, R. E. Baumbach, J. N. Cross, J. T. Stritzinger, M. J. Polinski, L. Maron, T. E. Albrecht-Schmitt, Nat. Chem. 2017, 9, 856–861.
- 22
- 22aM. P. Kelley, J. Su, M. Urban, M. Luckey, E. R. Batista, P. Yang, J. C. Shafer, J. Am. Chem. Soc. 2017, 139, 9901–9908;
- 22bM. A. Silver, S. K. Cary, J. A. Johnson, R. E. Baumbach, A. A. Arico, M. Luckey, M. Urban, J. C. Wang, M. J. Polinski, A. Chemey, G. Liu, K. W. Chen, S. M. Van Cleve, M. L. Marsh, T. M. Eaton, L. J. V. de Burgt, A. L. Gray, D. E. Hobart, K. Hanson, L. Maron, F. Gendron, J. Autschbach, M. Speldrich, P. Kogerler, P. Yang, J. Braley, T. E. Albrecht-Schmitt, Science 2016, 353, aaf3762;
- 22cS. K. Cary, M. Vasiliu, R. E. Baumbach, J. T. Stritzinger, T. D. Green, K. Diefenbach, J. N. Cross, K. L. Knappenberger, G. Liu, M. A. Silver, A. E. DePrince, M. J. Polinski, S. M. Van Cleve, J. H. House, N. Kikugawa, A. Gallagher, A. A. Arico, D. A. Dixon, T. E. Albrecht-Schmitt, Nat. Commun. 2015, 6, 6827.
- 23B. Setlow, S. Atluri, R. Kitchel, K. Koziol-Dube, P. Setlow, J. Bacteriol. 2006, 188, 3740–3747.
- 24J. Fichtel, J. Koster, J. Rullkotter, H. Sass, FEMS Microbiol. Ecol. 2007, 61, 522–532.
- 25J. M. Harrowfield, N. Lugan, G. H. Shahverdizadeh, A. A. Soudi, P. Thuery, Eur. J. Inorg. Chem. 2006, 389–396.
- 26
- 26aL. Chatelain, S. White, R. Scopelliti, M. Mazzanti, Angew. Chem. Int. Ed. 2016, 55, 14325–14329; Angew. Chem. 2016, 128, 14537–14541;
- 26bA. E. Vaughn, D. B. Bassil, C. L. Barnes, S. A. Tucker, P. B. Duval, J. Am. Chem. Soc. 2006, 128, 10656–10657;
- 26cS. Kannan, A. E. Vaughn, E. M. Weis, C. L. Barnes, P. B. Duval, J. Am. Chem. Soc. 2006, 128, 14024–14025;
- 26dS. Kannan, M. A. Moody, C. L. Barnes, P. B. Duval, Inorg. Chem. 2006, 45, 9206–9212.
- 27V. Mougel, B. Biswas, J. Pecaut, M. Mazzanti, Chem. Commun. 2010, 46, 8648–8650.
- 28D. F. Evans, J. Chem. Soc. 1959, 2003–2005.
- 29D. R. Kindra, W. J. Evans, Chem. Rev. 2014, 114, 8865–8882.
- 30D. P. Mills, O. J. Cooper, F. Tuna, E. J. L. McInnes, E. S. Davies, J. McMaster, F. Moro, W. Lewis, A. J. Blake, S. T. Liddle, J. Am. Chem. Soc. 2012, 134, 10047–10054.
- 31N. N. Krot, M. S. Grigoriev, Russ. Chem. Rev. 2004, 73, 89–100.
- 32J. C. Taylor, A. Ekstrom, C. H. Randall, Inorg. Chem. 1978, 17, 3285–3289.
- 33I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244–247.
- 34R. Faizova, S. White, R. Scopelliti, M. Mazzanti, Chem. Sci. 2018, 9, 7520–7527.
- 35D. E. Morris, Inorg. Chem. 2002, 41, 3542–3547.
- 36L. S. Natrajan, Coord. Chem. Rev. 2012, 256, 1583–1603.
- 37
- 37aE. Hashem, A. N. Swinburne, C. Schulzke, R. C. Evans, J. A. Platts, A. Kerridge, L. S. Natrajan, R. J. Baker, RSC Adv. 2013, 3, 4350–4361;
- 37bK. Grossmann, T. Arnold, A. Ikeda-Ohno, R. Steudtner, G. Geipel, G. Bernhard, Spectrochim. Acta Part A 2009, 72, 449–453;
- 37cA. Kirishima, T. Kimura, O. Tochiyama, Z. Yoshida, Chem. Commun. 2003, 910–911;
- 37dD. J. Hilton, R. P. Prasankumar, E. J. Schelter, V. K. Thorsmolle, S. A. Trugman, A. P. Shreve, J. L. Kiplinger, D. E. Morris, A. J. Taylor, J. Phys. Chem. A 2008, 112, 7840–7847.
- 38R. Steudtner, T. Arnold, K. Grossmann, G. Geipel, V. Brendler, Inorg. Chem. Commun. 2006, 9, 939–941.
- 39B. Ordejon, L. Seijo, Z. Barandiaran, J. Chem. Phys. 2005, 123, 204502.
- 40L. S. Natrajan, J. Chem. Soc. Dalton Trans. 2012, 41, 13167–13172.
- 41Deposition Numbers 2045631 (1-Crypt), 2045632 (2-Crypt), 2045633 (3), 2045634 (3-NaK2), 2045635 (1-Na), 2045636 (4) and 2045637 (5) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.