α-Selective Ring-Opening Reactions of Bicyclo[1.1.0]butyl Boronic Ester with Nucleophiles
Lin Guo
Bristol University, Department of Chemistry, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorAdam Noble
Bristol University, Department of Chemistry, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorCorresponding Author
Prof. Varinder K. Aggarwal
Bristol University, Department of Chemistry, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorLin Guo
Bristol University, Department of Chemistry, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorAdam Noble
Bristol University, Department of Chemistry, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorCorresponding Author
Prof. Varinder K. Aggarwal
Bristol University, Department of Chemistry, Cantock's Close, Bristol, BS8 1TS UK
Search for more papers by this authorAbstract
The reaction of bicyclo[1.1.0]butyl pinacol boronic ester (BCB-Bpin) with nucleophiles has been studied. Unlike BCBs bearing electron-withdrawing groups, which react with nucleophiles at the β-position, BCB-Bpin reacts with a diverse set of heteroatom (O, S, N)-centred nucleophiles exclusively at the α-position. Aliphatic alcohols, phenols, carboxylic acids, thiols and sulfonamides were found to be competent nucleophiles, providing ready access to α-heteroatom-substituted cyclobutyl boronic esters. In contrast, sterically hindered bis-sulfonamides and related nucleophiles reacted with BCB-Bpin at the β′-position leading to cyclopropanes with high trans-selectivity. The origin of selectivity is discussed.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202011739-sup-0001-misc_information.pdf12 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. B. Wiberg, G. M. Lampman, R. P. Ciula, D. S. Connor, P. Schertler, J. Lavanish, Tetrahedron 1965, 21, 2749–2769;
- 1bJ. Turkowska, J. Durka, D. Gryko, Chem. Commun. 2020, 56, 5718–5734.
- 2
- 2aS. Hoz, D. Aurbach, Tetrahedron 1979, 35, 881–883;
- 2bFor a book chapter, see: S. Hoz in The Chemistry of the Cyclopropyl Group, Vol. 1 (Ed.: Z. Rappoport), Wiley, New York, 1987, pp. 1121–1191;
10.1002/0470023449.ch19 Google Scholar
- 2cP. R. Khoury, J. D. Goddard, W. Tam, Tetrahedron 2004, 60, 8103–8112.
- 3
- 3aE. P. Blanchard, Jr., A. Cairncross, J. Am. Chem. Soc. 1966, 88, 487–495;
- 3bH. K. Hall, Jr., E. P. Blanchard, Jr., S. C. Cherkofsky, J. B. Sieja, W. A. Sheppard, J. Am. Chem. Soc. 1971, 93, 110–120;
- 3cY. Gaoni, Tetrahedron 1989, 45, 2819–2840.
- 4
- 4aY. Gaoni, Tetrahedron Lett. 1988, 29, 1591–1594;
- 4bR. Gianatassio, J. M. Lopchuk, J. Wang, C.-M. Pan, L. R. Malins, L. Prieto, T. A. Brandt, M. R. Collins, G. M. Gallego, N. W. Sach, J. E. Spangler, H. Zhu, J. Zhu, P. S. Baran, Science 2016, 351, 241–246;
- 4cJ. M. Lopchuk, K. Fjelbye, Y. Kawamata, L. R. Malins, C.-M. Pan, R. Gianatassio, J. Wang, L. Prieto, J. Bradow, T. A. Brandt, M. R. Collins, J. Eleraas, J. Ewanicki, W. Farrell, W. Farrell, O. O. Fadeyi, G. M. Gallego, J. J. Mousseau, P. Olivier, N. W. Sach, J. K. Smith, J. E. Spangler, H. Zhu, J. Zhu, P. S. Baran, J. Am. Chem. Soc. 2017, 139, 3209–3226.
- 5
- 5aY. Gaoni, Tetrahedron Lett. 1982, 23, 5215–5218;
- 5bR. Panish, S. R. Chintala, D. T. Boruta, Y. Fang, M. T. Taylor, J. M. Fox, J. Am. Chem. Soc. 2013, 135, 9283–9286;
- 5cM. Ociepa, A. J. Wierzba, J. Turkowska, D. Gryko, J. Am. Chem. Soc. 2020, 142, 5355–5361.
- 6
- 6aP. Gassman, G. Carroll, J. Org. Chem. 1984, 49, 2074–2076;
- 6bX. Wu, W. Hao, K. Y. Ye, B. Jiang, G. Pombar, Z. Song, S. Lin, J. Am. Chem. Soc. 2018, 140, 14836–14843;
- 6cG. Ernouf, E. Chirkin, L. Rhyman, P. Ramasami, J.-C. Cintrat, Angew. Chem. Int. Ed. 2020, 59, 2618–2622; Angew. Chem. 2020, 132, 2640–2644;
- 6dC. J. Pratt, R. A. Aycock, M. D. King, N. T. Jui, Synlett 2020, 31, 51–54.
- 7V. M. Dembitsky, J. Nat. Med. 2008, 62, 1–33.
- 8N. J. Wheate, S. Walker, G. E. Craig, R. Oun, Dalton Trans. 2010, 39, 8113–8127.
- 9
- 9aA. Fawcett, T. Biberger, V. K. Aggarwal, Nat. Chem. 2019, 11, 117–122;
- 9bM. Silvi, V. K. Aggarwal, J. Am. Chem. Soc. 2019, 141, 9511–9515.
- 10
- 10aA. Fawcett, A. Murtaza, C. H. U. Gregson, V. K. Aggarwal, J. Am. Chem. Soc. 2019, 141, 4573–4578;
- 10bC. H. U. Gregson, V. Ganesh, V. K. Aggarwal, Org. Lett. 2019, 21, 3412–3416;
- 10cS. Yu, C. Jing, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2020, 59, 3917–3921; Angew. Chem. 2020, 132, 3945–3949;
- 10dD. P. Hari, J. C. Abell, V. Fasano, V. K. Aggarwal, J. Am. Chem. Soc. 2020, 142, 5515–5520;
- 10eS. H. Bennett, A. Fawcett, E. H. Denton, T. Biberger, V. Fasano, N. Winter, V. K. Aggarwal, J. Am. Chem. Soc. 2020, 142, 16766—16775.
- 11
- 11aK. Hong, X. Liu, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 10581–10584;
- 11bA. Noble, R. S. Mega, D. Pflästerer, E. L. Myers, V. K. Aggarwal, Angew. Chem. Int. Ed. 2018, 57, 2155–2159; Angew. Chem. 2018, 130, 2177–2181;
- 11cFor an overview of boron-stabilized carbanions, see: T. Klis, S. Luliński, J. Serwatowski, Curr. Org. Chem. 2010, 14, 2549–2566.
- 12See Supporting Information for details.
- 13
- 13aP. Andres, G. Ballano, M. I. Calaza, C. Cativiela, Chem. Soc. Rev. 2016, 45, 2291–2307;
- 13bA. Šterman, I. Sosič, S. Gobec, Z. Časar, Org. Chem. Front. 2019, 6, 2991–2998.
- 14The relative trans-configuration of 5 a was assigned by selective 1D NOESY experiment, and the relative stereochemistry of 5 f was determined by X-ray analysis. See SI for full details.
- 15K. M. Sadhu, D. S. Matteson, Organometallics 1985, 4, 1687–1689.
- 16
- 16aG. Zweifel, H. Arzoumanian, C. C. Whitney, J. Am. Chem. Soc. 1967, 89, 3652–3653;
- 16bR. J. Armstrong, V. K. Aggarwal, Synthesis 2017, 49, 3323–3336.
- 17
- 17aA. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat. Chem. 2014, 6, 584–589;
- 17bM. Odachowski, A. Bonet, S. Essafi, P. Conti-Ramsden, J. N. Harvey, D. Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2016, 138, 9521–9532.
- 18Y. Wang, A. Noble, E. L. Myers, V. K. Aggarwal, Angew. Chem. Int. Ed. 2016, 55, 4270–4274; Angew. Chem. 2016, 128, 4342–4346.
- 19G. A. Olah, V. P. Reddy, G. K. S. Prakash, Chem. Rev. 1992, 92, 69–95.
- 20
- 20aK. B. Wiberg, G. Szeimies, J. Am. Chem. Soc. 1970, 92, 571–579;
- 20bW. R. Moore, K. G. Taylor, P. Müller, S. S. Hall, Z. L. F. Gaibel, Tetrahedron Lett. 1970, 11, 2365–2368;
10.1016/S0040-4039(01)98230-9 Google Scholar
- 20cM. S. Baird, S. R. Buxton, M. Mitra, Tetrahedron Lett. 1982, 23, 2701–2704;
- 20dS. Hoz, M. Livneh, D. Cohen, J. Org. Chem. 1986, 51, 4537–4544.
- 21Further support for this steric-controlled regioselectivity was provided by the reaction of 10 with N-tosylbenzamide 4 e (intermediate size between 1 jj and 4 a), which provided a mixture of cyclobutane and cyclopropane products in a 3.7:1 ratio (see Supporting Information for details). Steric effects also likely contribute to the high selectivity for cyclopropane formation in reactions of bis-sulfonamides and N-tosylbenzamides with BCB-Bpin 2 (see Table 3 and Scheme 3 b), however, here the selectivity is also enhanced by the reduced stability of the cyclobutyl cation relative to the cyclopropylcarbinyl cation III.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.