A Mitochondrion-Localized Two-Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors
This article relates to:
-
Correspondence on “A Mitochondrion-Localized Two-Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors”
- Volume 136Issue 41Angewandte Chemie
- First Published online: January 23, 2024
Shi Kuang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Lingli Sun
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXianrui Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorXinxing Liao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Thomas W. Rees
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Leli Zeng
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yu Chen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xiting Zhang
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
Search for more papers by this authorProf. Dr. Liangnian Ji
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hui Chao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201 P. R. China
Search for more papers by this authorShi Kuang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Lingli Sun
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorXianrui Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorXinxing Liao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Thomas W. Rees
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorDr. Leli Zeng
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Yu Chen
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Xiting Zhang
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
Search for more papers by this authorProf. Dr. Liangnian Ji
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hui Chao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201 P. R. China
Search for more papers by this authorAbstract
The efficacy of photodynamic therapy is typically reliant on the local concentration and diffusion of oxygen. Due to the hypoxic microenvironment found in solid tumors, oxygen-independent photosensitizers are in great demand for cancer therapy. We herein report an iridium(III) anthraquinone complex as a mitochondrion-localized carbon-radical initiator. Its emission is turned on under hypoxic conditions after reduction by reductase. Furthermore, its two-photon excitation properties (λex=730 nm) are highly desirable for imaging. Upon irradiation, the reduced form of the complex generates carbon radicals, leading to a loss of mitochondrial membrane potential and cell death (IC50light=2.1 μm, IC50dark=58.2 μm, PI=27.7). The efficacy of the complex as a PDT agent was also demonstrated under hypoxic conditions in vivo. To the best of our knowledge, it is the first metal-complex-based theranostic agent which can generate carbon radicals for oxygen-independent two-photon photodynamic therapy.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202009888-sup-0001-misc_information.pdf2.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Huang, S. Banerjee, K. Qiu, P. Zhang, O. Blacque, T. Malcomson, M. J. Paterson, G. J. Clarkson, M. Staniforth, V. G. Stavros, G. Gasser , H. Chao, P. J. Sadler , Nat. Chem. 2019, 11, 1041–1048;
- 1bC. Mari, V. Pierroz, S. Ferrari, G. Gasser, Chem. Sci. 2015, 6, 2660–2686;
- 1cX. H. Wang, X. Y. Wang, S. X. Jin, N. Muhammad, Z. J. Guo, Chem. Rev. 2019, 119, 1138–1192.
- 2
- 2aH. Huang, B. Yu, P. Zhang, J. Huang, Y. Chen, G. Gasser, L. Ji, H. Chao, Angew. Chem. Int. Ed. 2015, 54, 14049–14052; Angew. Chem. 2015, 127, 14255–14258;
- 2bV. N. Nguyen, S. Qi, S. Kim, N. Kwon, G. Kim, Y. Yim, S. Park, J. Yoon, J. Am. Chem. Soc. 2019, 141, 16243–16248;
- 2cY. Yu, Q. Xu, S. He, H. Xiong, Q. Zhang, W. Xu, V. Ricotta, L. Bai, Q. Zhang, Z. Yu, J. Ding, H. Xiao, D. Zhou, Coord. Chem. Rev. 2019, 387, 154–179.
- 3
- 3aZ. Yang, W. Fan, J. Zou, W. Tang, L. Li, L. He, Z. Shen, Z. Wang, O. Jacobson, M. A. Aronova, P. Rong, J. Song, W. Wang, X. Chen, J. Am. Chem. Soc. 2019, 141, 14687–14698;
- 3bI. Roy, S. Bobbala, R. M. Young, Y. Beldjoudi, M. T. Nguyen, M. M. Cetin, J. A. Cooper, S. Allen, O. Anamimoghadam, E. A. Scott, M. R. Wasielewski, J. F. Stoddart, J. Am. Chem. Soc. 2019, 141, 12296–12304;
- 3cF. Xu, H. Li, Q. Yao, H. Ge, J. Fan, W. Sun, J. Wang, X. Peng, Chem. Sci. 2019, 10, 10586–10594.
- 4
- 4aS. Monro, K. L. Colon, H. Yin, J. Roque, P. Konda, S. Gujar, R. P. Thummel, L. Lilge, C. G. Cameron, S. A. McFarland, Chem. Rev. 2019, 119, 797–828;
- 4bR. Ho-Wu, S. H. Yau, T. Goodson, J. Phys. Chem. B 2017, 121, 10073–10080.
- 5
- 5aR. Bevernaegie, B. Doix, E. Bastien, A. Diman, A. Decottignies, O. Feron, B. Elias, J. Am. Chem. Soc. 2019, 141, 18486–18491;
- 5bF. Bolze, S. Jenni, A. Sour, V. Heitz, Chem. Commun. 2017, 53, 12857–12877.
- 6
- 6aG. Solaini, A. Baracca, G. Lenaz, G. Sgarbi, Biochim. Biophys. Acta Bioenerg. 2010, 1797, 1171–1177;
- 6bP. Vaupel, M. Hockel, A. Mayer, Antioxid. Redox Signaling 2007, 9, 1221–1235.
- 7
- 7aD. Wang, H. Wu, S. Z. F. Phua, G. Yang, W. Qi Lim, L. Gu, C. Qian, H. Wang, Z. Guo, H. Chen, Y. Zhao, Nat. Commun. 2020, 11, 357;
- 7bQ. Yu, T. Huang, C. Liu, M. Zhao, M. Xie, G. Li, S. Liu, W. Huang, Q. Zhao, Chem. Sci. 2019, 10, 9091–9098;
- 7cE. Ju, K. Dong, Z. Chen, Z. Liu, C. Liu, Y. Huang, Z. Wang, F. Pu, J. Ren, Xi. Qu, Angew. Chem. Int. Ed. 2016, 55, 11467–11471; Angew. Chem. 2016, 128, 11639–11643;
- 7dH. Chen, J. Tian, W. He, Z. Guo, J. Am. Chem. Soc. 2015, 137, 1539–1547;
- 7eH. Cao, L. Wang, Y. Yang, J. Li, Y. Qi, Y. Li, Y. Li, H. Wang, J. Li, Angew. Chem. Int. Ed. 2018, 57, 7759–7763; Angew. Chem. 2018, 130, 7885–7889;
- 7fQ. Jia, J. Ge, W. Liu, X. Zheng, S. Chen, Y. Wen, H. Zhang, P. Wang, Adv. Mater. 2018, 30, 1706090.
- 8J. Shi, P. W. Kantoff, R. Wooster, O. C. Farokhzad, Nat. Rev. Cancer 2017, 17, 20–37.
- 9
- 9aZ. Lv, H. Wei, Q. Li, X. Su, S. Liu, K. Y. Zhang, W. Lv, Q. Zhao, X. Li, W. Huang, Chem. Sci. 2018, 9, 502–512;
- 9bL. He, M. F. Zhang, Z. Y. Pan, K. N. Wang, Z. J. Zhao, Y. Li, Z. W. Mao, Chem. Commun. 2019, 55, 10472–10475;
- 9cL. N. Lameijer, D. Ernst, S. L. Hopkins, M. S. Meijer, S. H. C. Askes, S. E. Le Dévédec, S. A. Bonnet, Angew. Chem. Int. Ed. 2017, 56, 11549–11553; Angew. Chem. 2017, 129, 11707–11711;
- 9dV. Novohradsky, A. Rovira, C. Hally, A. Galindo, G. Vigueras, A. Gandioso, M. Svitelova, R. Bresolí-Obach, H. Kostrhunova, L. Markova, J. Kasparkova, S. Nonell, J. Ruiz, V. Brabec, V. Marchán, Angew. Chem. Int. Ed. 2019, 58, 6311–6315; Angew. Chem. 2019, 131, 6377–6381;
- 9eM. Li, Y. Shao, J. H. Kim, Z. Pu, X. Zhao, H. Huang, T. Xiong, Y. Kang, G. Li, K. Shao, J. Fan, J. W. Foley, J. S. Kim, X. Peng, J. Am. Chem. Soc. 2020, 142, 5380–5388.
- 10
- 10aS. Shen, C. Zhu, D. Huo, M. Yang, J. Xue, Y. Xia, Angew. Chem. Int. Ed. 2017, 56, 8801–8804; Angew. Chem. 2017, 129, 8927–8930;
- 10bX. Q. Wang, F. Gao, X. Z. Zhang, Angew. Chem. Int. Ed. 2017, 56, 9029–9033; Angew. Chem. 2017, 129, 9157–9161.
- 11Y. Wan, G. Lu, J. Zhang, Z. Wang, X. Li, R. Chen, X. Cui, Z. Huang, Y. Xiao, J. Chelora, W. Zhang, Y. Liu, M. Li, H. Y. Xie, C. S. Lee, Adv. Funct. Mater. 2019, 29, 1903436.
- 12L. Sun, Y. Chen, S. Kuang, G. Li, R. Guan, J. Liu, L. Ji, H. Chao, Chem. Eur. J. 2016, 22, 8955–8965.
- 13
- 13aY. Chen, R. Guan, C. Zhang, J. Huang, L. Ji, H. Chao, Coord. Chem. Rev. 2016, 310, 16–40;
- 13bL. K. McKenzie, H. E. Bryant, J. A. Weinstein, Coord. Chem. Rev. 2019, 379, 2–29.
- 14Z. Zhou, J. Liu, T. W. Rees, H. Wang, X. Li, H. Chao, P. J. Stang, Proc. Natl. Acad. Sci. USA 2018, 115, 5664–5669.
- 15
- 15aS. W. Botchway, M. Charnley, J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein, J. A. G. Williams, Proc. Natl. Acad. Sci. USA 2008, 105, 16071–16076;
- 15bS. Chakrabortty, B. K. Agrawalla, A. Stumper, N. M. Vegi, S. Fischer, C. Reichardt, M. Kögler, B. Dietzek, M. Feuring-Buske, C. Buske, S. Rau, T. Weil, J. Am. Chem. Soc. 2017, 139, 2512–2519;
- 15cE. M. Boreham, L. Jones, A. N. Swinburne, M. Blanchard-Desce, V. Hugues, C. Terryn, F. Miomandre, G. Lemercier, L. S. Natrajan, Dalton Trans. 2015, 44, 16127–16135.
- 16H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson, H. L. Anderson, Nat. Photonics 2008, 2, 420–424.
- 17
- 17aL. Yang, R. Zhang, B. Liu, J. Wang, S. Wang, M. Y. Han, Z. Zhang, Angew. Chem. Int. Ed. 2014, 53, 10109–10113; Angew. Chem. 2014, 126, 10273–10277;
- 17bR. Li, N. D. Mansukhani, L. M. Guiney, Z. Ji, Y. Zhao, C. H. Chang, C. T. French, J. F. Miller, M. C. Hersam, A. E. Nel, T. Xia, ACS Nano 2016, 10, 10966–10980.
- 18
- 18aB. Z. Zhu, G. Q. Shan, C. H. Huang, B. Kalyanaraman, L. Mao, Y. G. Du, Proc. Natl. Acad. Sci. USA 2009, 106, 11466–11471;
- 18bQ. Guo, S. Y. Qian, R. P. Mason, J. Am. Soc. Mass Spectrom. 2003, 14, 862–871.
- 19
- 19aF. Türkyilmaz, G. Kehr, J. Li, C. G. Daniliuc, M. Tesch, A. Studer, G. Erke, Angew. Chem. Int. Ed. 2016, 55, 1470–1473; Angew. Chem. 2016, 128, 1492–1495;
- 19bP. Wang, B. Zhao, Y. Yuan, Z. Shi, Chem. Commun. 2019, 55, 1971–1974.
- 20
- 20aM. Grigalavicius, M. Mastrangelopoulou, K. Berg, D. Arous, M. Ménard, T. Raabe-Henriksen, E. Brondz, S. Siem, A. Görgen, N. F. J. Edin, E. Malinen, T. A. Theodossiou, Nat. Commun. 2019, 10, 3986;
- 20bY. K. Petit, C. Leypold, N. Mahne, E. Mourad, L. Schafzahl, C. Slugovc, S. M. Borisov, S. A. Freunberger, Angew. Chem. Int. Ed. 2019, 58, 6535–6539; Angew. Chem. 2019, 131, 6605–6609.
- 21
- 21aJ. Zhang, C. Li, R. Zhang, F. Zhang, W. Liu, X. Liu, S. M. Y. Lee, H. Zhang, Chem. Commun. 2016, 52, 2679–2682;
- 21bA. L. Dudylina, M. V. Ivanova, A. V. Kalatanova, E. I. Kalenikova, V. G. Makarov, M. N. Makarova, K. B. Shumaev, E. K. Ruuge, Biophysics 2019, 64, 203–208.
- 22
- 22aV. A. Timoshnikov, T. Kobzeva, O. Y. Selyutina, N. E. Polyakov, G. J. Kontoghiorghes, J. Biol. Inorg. Chem. 2019, 24, 331–341;
- 22bK. Lei, M. Sun, L. Due, X. Zhang, H. Yu, S. Wang, T. Hayat, A. Alsaedi, Talanta 2017, 170, 314–321.
- 23
- 23aD. M. Niedzwiedzki, J. O. Sullivan, T. Polívka, R. R. Birge, H. A. Frank, J. Phys. Chem. B 2006, 110, 22872–22885;
- 23bS. Amarie, U. Förster, N. Gildenhoff, A. Dreuw, J. Wachtveitl, Chem. Phys. 2010, 373, 8–14.
- 24A. E. Wendlandt, S. S. Stahl, Angew. Chem. Int. Ed. 2015, 54, 14638–14658; Angew. Chem. 2015, 127, 14848–14868.
- 25
- 25aY. Chen, L. Qiao, L. Ji, H. Chao, Biomaterials 2014, 35, 2–13;
- 25bC. A. Puckett, J. K. Barton, Biochemistry 2008, 47, 11711–11716.
- 26X. Xue, C. Qian, H. Fang, H. K. Liu, H. Yuan, Z. Guo, Y. Bai, W. He, Angew. Chem. Int. Ed. 2019, 58, 12661–12666; Angew. Chem. 2019, 131, 12791–12796.
- 27
- 27aC. Fischbach, R. Chen, T. Matsumoto, T. Schmelzle, J. S. Brugge, P. J. Polverini, D. J. Mooney, Nat. Methods 2007, 4, 855–860;
- 27bH. Huang, P. Zhang, B. Yu, Y. Chen, J. Wang, L. Ji, H. Chao, J. Med. Chem. 2014, 57, 8971–8983.
- 28G. Mehta, A. Y. Hsiao, M. Ingram, G. D. Luker, S. Takayama, J. Controlled Release 2012, 164, 192–204.
- 29S. Kuang, X. Liao, X. Zhang, T. W. Rees, R. Guan, K. Xiong, Y. Chen, L. Ji, H. Chao, Angew. Chem. Int. Ed. 2020, 59, 3315–3321; Angew. Chem. 2020, 132, 3341–3347.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.