Generation of Glycosyl Radicals from Glycosyl Sulfoxides and Its Use in the Synthesis of C-linked Glycoconjugates
Weidong Shang
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorSheng-Nan Su
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorRong Shi
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorZe-Dong Mou
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorGuo-Qiang Yu
Discovery Chemistry Unit, HitGen Inc., Building 6, No. Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200 China
Search for more papers by this authorCorresponding Author
Prof. Xia Zhang
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorCorresponding Author
Prof. Dawen Niu
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorWeidong Shang
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorSheng-Nan Su
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorRong Shi
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorZe-Dong Mou
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorGuo-Qiang Yu
Discovery Chemistry Unit, HitGen Inc., Building 6, No. Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200 China
Search for more papers by this authorCorresponding Author
Prof. Xia Zhang
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorCorresponding Author
Prof. Dawen Niu
Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041 China
Search for more papers by this authorDedicated to Professor Thomas R. Hoye on the occasion of his 70th birthday.
Abstract
We here report glycosyl sulfoxides appended with an aryl iodide moiety as readily available, air and moisture stable precursors to glycosyl radicals. These glycosyl sulfoxides could be converted to glycosyl radicals by way of a rapid and efficient intramolecular radical substitution event. The use of this type of precursors enabled the synthesis of various complex C-linked glycoconjugates under mild conditions. This reaction could be performed in aqueous media and is amenable to the synthesis of glycopeptidomimetics and carbohydrate-DNA conjugates.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202009828-sup-0001-misc_information.pdf13.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Giese, J. Dupuis, Angew. Chem. Int. Ed. Engl. 1983, 22, 622–623; Angew. Chem. 1983, 95, 633–634;
- 1bR. M. Adlington, J. E. Baldwin, A. Basak, R. P. Kozyrod, J. Chem. Soc. Chem. Commun. 1983, 944–945;
- 1cJ. Dupuis, B. Giese, D. Rüegge, H. Fischer, H.-G. Korth, R. Sustmann, Angew. Chem. Int. Ed. Engl. 1984, 23, 896–898; Angew. Chem. 1984, 96, 887–888;
- 1dB. Giese, J. Dupuis, Tetrahedron Lett. 1984, 25, 1349–1352;
- 1eB. Giese, J. Dupuis, M. Leising, M. Nix, H. J. Lindner, Carbohydr. Res. 1987, 171, 329–341;
- 1fB. Giese, Pure Appl. Chem. 1988, 60, 1655–1658;
- 1gG. E. Keck, E. J. Enholm, D. F. Kachensky, Tetrahedron Lett. 1984, 25, 1867–1870.
- 2For glycosyl halides as radical precursors, see:
- 2aR. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem. Int. Ed. 2010, 49, 7274–7276; Angew. Chem. 2010, 122, 7432–7434;
- 2bR. S. Andrews, J. J. Becker, M. R. Gagné, Org. Lett. 2011, 13, 2406–2409;
- 2cR. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem. Int. Ed. 2012, 51, 4140–4143; Angew. Chem. 2012, 124, 4216–4219;
- 2dL. Nicolas, P. Angibaud, I. Stansfield, P. Bonnet, L. Meerpoel, S. Reymond, J. Cossy, Angew. Chem. Int. Ed. 2012, 51, 11101–11104; Angew. Chem. 2012, 124, 11263–11266;
- 2eJ. Liu, H. Gong, Org. Lett. 2018, 20, 7991–7995;
- 2fL. Adak, S. Kawamura, G. Toma, T. Takenaka, K. Isozaki, H. Takaya, A. Orita, H. C. Li, T. K. M. Shing, M. Nakamura, J. Am. Chem. Soc. 2017, 139, 10693–10701.
- 3For 1,2-anhydro sugars as radical precursors, see:
- 3aJ. L. Chiara, E. Sesmilo, Angew. Chem. Int. Ed. 2002, 41, 3242–3246;
10.1002/1521-3773(20020902)41:17<3242::AID-ANIE3242>3.0.CO;2-I CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 3376–3380;
- 3bJ. D. Parrish, R. D. Little, Org. Lett. 2002, 4, 1439–1442;
- 3cG. A. Nishiguchi, R. D. Little, J. Org. Chem. 2005, 70, 5249–5256.
- 4For xanthates as glycosyl radical precursors, see:
- 4aM. Sakata, M. Haga, S. Tejima, Carbohydr. Res. 1970, 13, 379–390;
- 4bP. K. Kancharla, C. Navuluri, D. Crich, Angew. Chem. Int. Ed. 2012, 51, 11105–11109; Angew. Chem. 2012, 124, 11267–11271;
- 4cN. Kiya, Y. Hidaka, K. Usui, G. Hirai, Org. Lett. 2019, 21, 1588–1592. For excellent reviews:
- 4dS. Z. Zard, Angew. Chem. Int. Ed. Engl. 1997, 36, 672–685;
10.1002/anie.199706721 Google ScholarAngew. Chem. 1997, 109, 724–737;
- 4eS. Z. Zard, Org. Biomol. Chem. 2016, 14, 6891–6912.
- 5For use of glycosyl stannanes, see:
- 5aF. Zhu, S. Q. Zhang, Z. Chen, J. Rui, X. Hong, M. A. Walczak, J. Am. Chem. Soc. 2020, 142, 11102–11113;
- 5bF. Zhu, E. Miller, S.-Q. Zhang, D. Yi, S. O'Neill, X. Hong, M. A. Walczak, J. Am. Chem. Soc. 2018, 140, 18140–18150.
- 6For use of glycosyl selenides, see:
- 6aH.-G. Korth, R. Sustmann, J. Dupuis, B. Giese, J. Chem. Soc. Perkin Trans. 2 1986, 1453–1459;
- 6bR. SanMartin, B. Tavassoli, K. E. Walsh, D. S. Walter, T. Gallagher, Org. Lett. 2000, 2, 4051–4054;
- 6cY. Araki, T. Endo, M. Tanji, J. i. Nagasawa, Y. Ishido, Tetrahedron Lett. 1987, 28, 5853–5856.
- 7For use of glycosyl tellurides, see:
- 7aW. He, H. Togo, Y. Waki, M. Yokoyama, J. Chem. Soc. Perkin Trans. 1 1998, 2425–2434;
- 7bS. Yamago, H. Miyazoe, J.-i. Yoshida, Tetrahedron Lett. 1999, 40, 2339–2342;
- 7cK. Masuda, M. Nagatomo, M. Inoue, Nat. Chem. 2017, 9, 207–212.
- 8For precursors to “inverse” anomeric radicals, see:
- 8aA. Dumoulin, J. K. Matsui, Á. Gutieŕrez Bonet, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6614–6618; Angew. Chem. 2018, 130, 6724–6728;
- 8bS. O. Badir, A. Dumoulin, J. K. Matsui, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6610–6613; Angew. Chem. 2018, 130, 6720–6723;
- 8cF. Toriyama, J. Cornella, L. Wimmer, T.-G. Chen, D. D. Dixon, G. Creech, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 11132–11135;
- 8dP. Ji, Y. Zhang, Y. Wei, H. Huang, W. Hu, P. A. Mariano, W. Wang, Org. Lett. 2019, 21, 3086–3092;
- 8eI. C. S. Wan, M. D. Witte, A. J. Minnaard, Org. Lett. 2019, 21, 7669–7673.
- 9
- 9aY. Yang, B. Yu, Chem. Rev. 2017, 117, 12281–12356;
- 9bB. O. Fraser-Reid, K. Tatsuta, J. Thiem, Glycoscience: Chemistry and Chemical Biology, Springer, Berlin, 2008, pp. 785–791;
- 9cP. Renaud, M. P. Sibi, Radicals in Organic Synthesis, Vol. 2, Wiley-VCH, Weinheim, 2001, pp. 538–573;
10.1002/9783527618293.ch52 Google Scholar
- 9dS. Z. Zard, Advances in Free Radical Chemistry, JAI, Stamford, 1999, pp. 89–121;
- 9eL. Xu, N. Fan, X. Hu, Org. Biomol. Chem. 2020, 18, 5095–5109.
- 10
- 10aA. Dondoni, A. Marra, Chem. Rev. 2000, 100, 4395–4422;
- 10bG. Yang, J. Schmieg, M. Tsuji, R. W. Franck, Angew. Chem. Int. Ed. 2004, 43, 3818–3822; Angew. Chem. 2004, 116, 3906–3910;
- 10cD. Werz, D. Koester, A. Holkenbrink, Synthesis 2010, 3217–3242;
- 10dE. Leclerc, X. Pannecoucke, M. Ethève-Quelquejeu, M. Sollogoub, Chem. Soc. Rev. 2013, 42, 4270–4283.
- 11For excellent reviews, see:
- 11aC. P. Jasperse, D. P. Curran, T. L. Fevig, Chem. Rev. 1991, 91, 1237–1286;
- 11bP. Renaud, M. Sibi, Radicals in Organic Synthesis, 1st ed., Wiley-VCH, Weinheim, 2001;
10.1002/9783527618293 Google Scholar
- 11cH. Togo, Advanced Free Radical Reactions for Organic Synthesis, 1st ed., Elsevier, Amsterdam, 2004;
- 11dS. Z. Zard, Radical Reactions in Organic Synthesis, Oxford University Press, Oxford, 2003;
10.1093/oso/9780198502418.001.0001 Google Scholar
- 11e Encyclopaedia of Radicals in Chemistry, Biology and Materials (Eds.: C. Chatgilialoglu, A. Studer), Wiley-Interscience, New York, 2012;
10.1002/9781119953678 Google Scholar
- 11fA. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016, 55, 58–102; Angew. Chem. 2016, 128, 58–106;
- 11gM. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 12692–12714.
- 12
- 12aR.-Z. Li, H. Tang, L. Wan, X. Zhang, Z. Fu, J. Liu, S. Yang, D. Jia, D. Niu, Chem 2017, 3, 834–845;
- 12bW. Shang, Z.-D. Mou, H. Tang, X. Zhang, J. Liu, Z. Fu, D. Niu, Angew. Chem. Int. Ed. 2018, 57, 314–318; Angew. Chem. 2018, 130, 320–324;
- 12cH. B. Sun, L. Gong, Y. B. Tian, J. G. Wu, X. Zhang, J. Liu, Z. Fu, D. Niu, Angew. Chem. Int. Ed. 2018, 57, 9456–9460; Angew. Chem. 2018, 130, 9600–9604;
- 12dL. Gong, H. B. Sun, L. F. Deng, X. Zhang, J. Liu, S. Yang, D. Niu, J. Am. Chem. Soc. 2019, 141, 7680–7686;
- 12eW. Shang, B. He, D. Niu, Carbohydr. Res. 2019, 474, 16–33.
- 13
- 13a Modern Synthetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates (Eds.: D. B. Werz, S. Vidal), Wiley-VCH, Weinheim, 2014;
- 13bP. O. Adero, H. Amarasekara, P. Wen, L. Bohé, D. Crich, Chem. Rev. 2018, 118, 8242–8284.
- 14For pioneering studies, see:
- 14aD. Crich, Q. Yao, J. Org. Chem. 1996, 61, 3566–3570;
- 14bD. Crich, X. Hao, J. Org. Chem. 1997, 62, 5982–5988;
- 14cT. Ooi, M. Furuya, D. Sakai, K. Maruoka, Adv. Synth. Catal. 2001, 343, 166–168. For reviews, see:
- 14dC. H. Schiesser, L. M. Wild, Tetrahedron 1996, 52, 13265–13314;
- 14eD. Crich, Helv. Chim. Acta 2006, 89, 2167–2182;
- 14fF. Dénès, C. H. Schiesser, P. Renaud, Chem. Soc. Rev. 2013, 42, 7900–7942.
- 15“Intramolecular Homolytic Substitutions in Synthesis”: S. H. Kyne, C. H. Schiesser in Encyclopaedia of Radicals in Chemistry, Biology and Materials (Eds.: C. Chatgilialoglu, A. Studer), Wiley, Hoboken, 2012.
- 16
- 16aA. F. Garrido-Castro, N. Salaverri, M. C. Maestro, J. Alemán, Org. Lett. 2019, 21, 5295–5300;
- 16bJ. A. Fernádez-Salas, M. Rodríguez-Fernádez, M. C. Maestro, J. L. Garcia-Ruano, Chem. Commun. 2014, 50, 6046–6048;
- 16cJ. Coulomb, V. Certal, M.-H. Larraufie, C. Ollivier, J.-P. Corbet, G. Mignani, L. Fensterbank, E. Lacôte, M. Malacria, Chem. Eur. J. 2009, 15, 10225–10232;
- 16dP. A. Jordan, S. J. Miller, Angew. Chem. Int. Ed. 2012, 51, 2907–2911; Angew. Chem. 2012, 124, 2961–2965.
- 17J. A. Franz, D. H. Roberts, K. F. Ferris, J. Org. Chem. 1987, 52, 2256–22262.
- 18
- 18aS. H. Ueng, A. Solovyev, X. Yuan, S. J. Geib, L. Fensterbank, E. Lacote, M. Malacria, M. Newcomb, J. C. Walton, D. P. Curran, J. Am. Chem. Soc. 2009, 131, 11256–11262;
- 18bJ. C. Walton, M. M. Brahmi, L. Fensterbank, E. Lacote, M. Malacria, Q. Chu, S. H. Ueng, A. Solovyev, D. P. Curran, J. Am. Chem. Soc. 2010, 132, 2350–2358;
- 18cD. P. Curran, A. Solovyev, M. Makhlouf Brahmi, L. Fensterbank, M. Malacria, E. Lacôte, Angew. Chem. Int. Ed. 2011, 50, 10294–10317; Angew. Chem. 2011, 123, 10476–10500.
- 19D. P. Curran, T. R. McFadden, J. Am. Chem. Soc. 2016, 138, 7741–7752.
- 20X. Pan, E. Lacote, J. Lalevee, D. P. Curran, J. Am. Chem. Soc. 2012, 134, 5669–5674.
- 21
- 21aH. M. Aitken, A. N. Hancock, C. H. Schiesser, Chem. Commun. 2012, 48, 8326–8328;
- 21bA. L. J. Beckwith, D. R. Boate, J. Chem. Soc. Chem. Commun. 1986, 189–190.
- 22
- 22aD. Crich, T. K. Hutton, K. Ranganathan, J. Org. Chem. 2005, 70, 7672–7678. For glycosyl sulfones as radical precursors, see:
- 22bM. Nicolas, G. Doisneau, J.-M. Beau, Angew. Chem. Int. Ed. 2000, 39, 4111–4114;
10.1002/1521-3773(20001117)39:22<4111::AID-ANIE4111>3.0.CO;2-C PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 4277–4280.
- 23A. Solovyev, S.-H. Ueng, J. Monot, L. Fensterbank, M. Malacria, E. Lacôte, D. P. Curran, Org. Lett. 2010, 12, 2998–3001.
- 24 Visible Light Photocatalysis in Organic Chemistry (Eds.: C. R. J. Stephenson, T. P. Yoon, D. W. C. MacMillan,), Wiley-VCH, Weinheim, 2018.
10.1002/9783527674145 Google Scholar
- 25H. G. Korth, R. Sustmann, K. S. Groeninger, M. Leisung, B. Giese, J. Org. Chem. 1988, 53, 4364–4369.
- 26
- 26a“Biologically Relevant Glycopeptides: Synthesis and Applications”: C. S. Bennett, R. J. Payne, K. M. Koeller, C.-H. Wong in Glycoscience, Springer, Berlin, 2008, pp. 1795–1857;
- 26bJ. Kaffy, D. Brinet, J.-L. Soulier, I. Correia, N. Tonali, K. F. Fera, Y. Iacone, A. R. F. Hoffmann, L. Khemtémourian, B. Crousse, M. Taylor, D. Allsop, M. Taverna, O. Lequin, S. Ongeri, J. Med. Chem. 2016, 59, 2025–2040.
- 27
- 27aT. Zatsepin, T. Oretskaya, Chem. Biodiversity 2004, 1, 1401–1417;
- 27bH. Lonnberg, Bioconjugate Chem. 2009, 20, 1065–1094;
- 27cS. J. Kwon, K. B. Lee, K. Solakyildirim, S. Masuko, M. Ly, F. Zhang, L. Li, J. S. Dordick, R. J. Linhardt, Angew. Chem. Int. Ed. 2012, 51, 11800–11804; Angew. Chem. 2012, 124, 11970–11974.
- 28
- 28aR. A. Goodnow, C. E. Dumelin, A. D. Keefe, Nat. Rev. Drug Discovery 2017, 16, 131–147;
- 28bS. L. Belyanskaya, Y. Ding, J. F. Callahan, A. L. Lazaar, D. I. Israel, ChemBioChem 2017, 18, 837–842.
- 29M. L. Malone, B. M. Paegel, ACS Comb. Sci. 2016, 18, 182–187.
- 30J. Wang, H. Lundberg, S. Asai, P. Martín-Acosta, J. S. Chen, S. Brown, W. Farrell, R. G. Dushin, C. J. O'Donnell, A. S. Ratnayake, P. Richardson, Z. Liu, T. Qin, D. G. Blackmond, P. S. Baran, Proc. Natl. Acad. Sci. USA 2018, 115, E6404–E6410.
- 31J. P. Phelan, S. B. Lang, J. Sim, S. Berritt, A. J. Peat, K. Billings, L. Fan, G. A. Molander, J. Am. Chem. Soc. 2019, 141, 3723–3732.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.