Activity-Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image-Guided Surgery
Dr. Haidong Li
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Korea
Search for more papers by this authorDayeh Kim
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Korea
Search for more papers by this authorDr. Qichao Yao
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Search for more papers by this authorHaoying Ge
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Search for more papers by this authorJeewon Chung
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Korea
Search for more papers by this authorProf. Jiangli Fan
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016 China
Search for more papers by this authorProf. Jingyun Wang
School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Prof. Xiaojun Peng
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016 China
Search for more papers by this authorCorresponding Author
Prof. Juyoung Yoon
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Korea
Search for more papers by this authorDr. Haidong Li
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Korea
Search for more papers by this authorDayeh Kim
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Korea
Search for more papers by this authorDr. Qichao Yao
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Search for more papers by this authorHaoying Ge
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Search for more papers by this authorJeewon Chung
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Korea
Search for more papers by this authorProf. Jiangli Fan
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016 China
Search for more papers by this authorProf. Jingyun Wang
School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Prof. Xiaojun Peng
State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024 China
Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016 China
Search for more papers by this authorCorresponding Author
Prof. Juyoung Yoon
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Korea
Search for more papers by this authorAbstract
Near-infrared (NIR) activatable fluorescent probes have been considered to be the effective edge tools for the investigation of cell biology and disease diagnosis because of their outstanding advantages. Related genes involved in tumor genesis and progression regulate the overexpression of certain enzymes. Owing to the distinctive characteristics of quick reaction time and favorable pharmacokinetics, enzyme-reactive NIR optical probes have shown great potential in the diagnosis of tumorigenesis and in image-guided intraoperative surgeries with high signal-to-noise ratios. In this review, we mainly summarize the latest advancements in enzyme-reactive NIR fluorescent probes from design strategy to biomedical application. Specifically, some challenges and prospects in this field are presented at the end of the review, which will be beneficial to innovatively construct new multifunctional fluorescent probes and actively promote their clinical transformation in the future.
Conflict of interest
The authors declare no conflict of interest.
References
- 1R. L. Siegel, K. D. Miller, A. Jemal, CA Cancer J. Clin. 2020, 70, 7–30.
- 2
- 2aX. Li, S. Kolemen, J. Yoon, E. U. Akkaya, Adv. Funct. Mater. 2017, 27, 1604053;
- 2bX. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Angew. Chem. Int. Ed. 2018, 57, 11522–11531; Angew. Chem. 2018, 130, 11694–11704;
- 2cL. Cheng, X. Wang, F. Gong, T. Liu, Z. Liu, Adv. Mater. 2020, 32, 1902333;
- 2dM. Gao, B. Z. Tang, Coord. Chem. Rev. 2020, 402, 213076;
- 2eW. Zhai, Y. Zhang, M. Liu, H. Zhang, J. Zhang, C. Li, Angew. Chem. Int. Ed. 2019, 58, 16601–16609; Angew. Chem. 2019, 131, 16754–16762.
- 3
- 3aJ. B. Vermorken, P. Specenier, Ann. Oncol. 2010, 21, vii252–vii261;
- 3bF. Cardoso, E. Senkus-Konefka, L. Fallowfield, A. Costa, M. Castiglione, Ann. Oncol. 2010, 21, v15–v19.
- 4N. M. Luger, D. B. Mach, M. A. Sevcik, P. W. Mantyh, J. Pain Symptom Manag. 2005, 29, 32–46.
- 5K. Yang, G. Yang, L. Chen, L. Cheng, L. Wang, C. Ge, Z. Liu, Biomaterials 2015, 38, 1–9.
- 6H. K. Gaikwad, D. Tsvirkun, Y. Ben-Nun, E. Merquiol, R. Popovtzer, G. Blum, Nano Lett. 2018, 18, 1582–1591.
- 7Z. Teng, R. Wang, Y. Zhou, M. Kolios, Y. Wang, N. Zhang, Z. Wang, Y. Zheng, G. Lu, Biomaterials 2017, 134, 43–50.
- 8B. Guo, Z. Feng, D. Hu, S. Xu, E. Middha, Y. Pan, C. Liu, H. Zheng, J. Qian, Z. Sheng, B. Liu, Adv. Mater. 2019, 31, 1902504.
- 9
- 9aA. Ditto, F. Martinelli, G. Bogani, D. Lorusso, M. Carcangiu, V. Chiappa, C. Reato, C. Donfrancesco, K. J. Amaya, D. Carrillo, F. Raspagliesi, Gynecol. Oncol. 2015, 138, 78–82;
- 9bV. Strajina, B. M. Dy, D. R. Farley, M. L. Richards, T. J. McKenzie, K. C. Bible, F. G. Que, D. M. Nagorney, W. F. Young, G. B. Thompson, Ann. Surg. Oncol. 2017, 24, 1546–1550.
- 10A. Mochida, F. Ogata, T. Nagaya, P. L. Choyke, H. Kobayashi, Bioorg. Med. Chem. 2018, 26, 925–930.
- 11
- 11aM. Kamiya, Y. Urano, Curr. Opin. Chem. Biol. 2016, 33, 9–15;
- 11bY. Nakamura, T. Harada, T. Nagaya, K. Sato, S. Okuyama, P. L. Choyke, H. Kobayashi, Oncotarget 2016, 7, 79408–79416;
- 11cD. Asanuma, M. Sakabe, M. Kamiya, K. Yamamoto, J. Hiratake, M. Ogawa, N. Kosaka, P. L. Choyke, T. Nagano, H. Kobayashi, Y. Urano, Nat. Commun. 2015, 6, 6463.
- 12V. H. Koelzer, I. Zlobec, M. D. Berger, G. Cathomas, H. Dawson, K. Dirschmid, M. Hädrich, D. Inderbitzin, F. Offner, G. Puppa, W. Seelentag, B. Schnüriger, L. Tornillo, A. Lugli, Virchows Arch. 2015, 466, 485–493.
- 13A. Dzutsev, J. H. Badger, E. Perez-Chanona, S. Roy, R. Salcedo, C. K. Smith, G. Trinchieri, Annu. Rev. Immunol. 2017, 35, 199–228.
- 14
- 14aH. Zhu, Z. Zhang, S. Long, J. Du, J. Fan, X. Peng, Nat. Protoc. 2018, 13, 2348–2361;
- 14bH. Li, Q. Yao, J. Fan, J. Du, J. Wang, X. Peng, Biosens. Bioelectron. 2017, 94, 536–543.
- 15
- 15aH. Zhang, J. Fan, J. Wang, B. Dou, F. Zhou, J. Cao, J. Qu, Z. Cao, W. Zhao, X. Peng, J. Am. Chem. Soc. 2013, 135, 17469–17475;
- 15bW. Y. Kim, M. Won, A. Salimi, A. Sharma, J. H. Lim, S.-H. Kwon, J.-Y. Jeon, J. Y. Lee, J. S. Kim, Chem. Commun. 2019, 55, 13267–13270;
- 15cA. Sharma, E.-J. Kim, H. Shi, J. Y. Lee, B. G. Chung, J. S. Kim, Biomaterials 2018, 155, 145–151;
- 15dK. Gu, W. Qiu, Z. Guo, C. Yan, S. Zhu, D. Yao, P. Shi, H. Tian, W.-H. Zhu, Chem. Sci. 2019, 10, 398–405;
- 15eM. Kawatani, K. Yamamoto, D. Yamada, M. Kamiya, J. Miyakawa, Y. Miyama, R. Kojima, T. Morikawa, H. Kume, Y. Urano, J. Am. Chem. Soc. 2019, 141, 10409–10416;
- 15fQ. Miao, D. C. Yeo, C. Wiraja, J. Zhang, X. Ning, C. Xu, K. Pu, Angew. Chem. Int. Ed. 2018, 57, 1256–1260; Angew. Chem. 2018, 130, 1270–1274.
- 16
- 16aS. Benchimol, A. Fuks, S. Jothy, N. Beauchemin, K. Shirota, C. P. Stanners, Cell 1989, 57, 327–334;
- 16bM. Grunnet, J. B. Sorensen, Lung Cancer 2012, 76, 138–143.
- 17
- 17aH. Li, Q. Yao, J. Fan, N. Jiang, J. Wang, J. Xia, X. Peng, Chem. Commun. 2015, 51, 16225–16228;
- 17bC. Yik-Sham Chung, G. A. Timblin, K. Saijo, C. J. Chang, J. Am. Chem. Soc. 2018, 140, 6109–6121;
- 17cA. C. Sedgwick, L. Wu, H.-H. Han, S. D. Bull, X.-P. He, T. D. James, J. L. Sessler, B. Z. Tang, H. Tian, J. Yoon, Chem. Soc. Rev. 2018, 47, 8842–8880;
- 17dC.-t. Yang, Y. Wang, E. Marutani, T. Ida, X. Ni, S. Xu, W. Chen, H. Zhang, T. Akaike, F. Ichinose, M. Xian, Angew. Chem. Int. Ed. 2019, 58, 10898–10902; Angew. Chem. 2019, 131, 11014–11018;
- 17eC. Wang, Q. Qiao, W. Chi, J. Chen, W. Liu, D. Tan, S. McKechnie, D. Lyu, X.-F. Jiang, W. Zhou, N. Xu, Q. Zhang, Z. Xu, X. Liu, Angew. Chem. Int. Ed. 2020, 59, 10160–10172; Angew. Chem. 2020, 132, 10246–10258;
- 17fZ. Lei, X. Li, X. Luo, H. He, J. Zheng, X. Qian, Y. Yang, Angew. Chem. Int. Ed. 2017, 56, 2979–2983; Angew. Chem. 2017, 129, 3025–3029;
- 17gL. P. Smaga, N. W. Pino, G. E. Ibarra, V. Krishnamurthy, J. Chan, J. Am. Chem. Soc. 2020, 142, 680–684;
- 17hH. Li, Q. Yao, J. Fan, J. Du, J. Wang, X. Peng, Dyes Pigm. 2016, 133, 79–85;
- 17iH. Li, Q. Yao, J. Fan, C. Hu, F. Xu, J. Du, J. Wang, X. Peng, Ind. Eng. Chem. Res. 2016, 55, 1477–1483;
- 17jB. Li, L. Lu, M. Zhao, Z. Lei, F. Zhang, Angew. Chem. Int. Ed. 2018, 57, 7483–7487; Angew. Chem. 2018, 130, 7605–7609;
- 17kS.-H. Park, N. Kwon, J.-H. Lee, J. Yoon, I. Shin, Chem. Soc. Rev. 2020, 49, 143–179;
- 17lH. Xiao, W. Zhang, P. Li, W. Zhang, X. Wang, B. Tang, Angew. Chem. Int. Ed. 2020, 59, 4216–4230; Angew. Chem. 2020, 132, 4244–4258;
- 17mK. Bruemmer, S. Crossley, C. J. Chang, Angew. Chem. Int. Ed. 2020, 59, 13724–13762; Angew. Chem. 2020, 132, 13838–13867.
- 18
- 18aW. Sun, S. Guo, C. Hu, J. Fan, X. Peng, Chem. Rev. 2016, 116, 7768–7817;
- 18bJ. Peng, A. Samanta, X. Zeng, S. Han, L. Wang, D. Su, D. T. B. Loong, N.-Y. Kang, S.-J. Park, A. H. All, W. Jiang, L. Yuan, X. Liu, Y.-T. Chang, Angew. Chem. Int. Ed. 2017, 56, 4165–4169; Angew. Chem. 2017, 129, 4229–4233.
- 19
- 19aX. Wang, G. Ramamurthy, A. A. Shirke, E. Walker, J. Mangadlao, Z. Wang, Y. Wang, L. Shan, M. D. Schluchter, Z. Dong, S. M. Brady-Kalnay, N. K. Walker, M. Gargesha, G. MacLennan, D. Luo, R. Sun, B. Scott, D. Roy, J. Li, J. P. Basilion, Cancer Res. 2020, 80, 156–162;
- 19bA. Ogasawara, M. Kamiya, K. Sakamoto, Y. Kuriki, K. Fujita, T. Komatsu, T. Ueno, K. Hanaoka, H. Onoyama, H. Abe, Y. Tsuji, M. Fujishiro, K. Koike, M. Fukayama, Y. Seto, Y. Urano, Bioconjugate Chem. 2019, 30, 1055–1060;
- 19cH. Onoyama, M. Kamiya, Y. Kuriki, T. Komatsu, H. Abe, Y. Tsuji, K. Yagi, Y. Yamagata, S. Aikou, M. Nishida, K. Mori, H. Yamashita, M. Fujishiro, S. Nomura, N. Shimizu, M. Fukayama, K. Koike, Y. Urano, Y. Seto, Sci. Rep. 2016, 6, 26399.
- 20
- 20aM. Chiba, Y. Ichikawa, M. Kamiya, T. Komatsu, T. Ueno, K. Hanaoka, T. Nagano, N. Lange, Y. Urano, Angew. Chem. Int. Ed. 2017, 56, 10418–10422; Angew. Chem. 2017, 129, 10554–10558;
- 20bS. He, J. Li, Y. Lyu, J. Huang, K. Pu, J. Am. Chem. Soc. 2020, 142, 7075–7082;
- 20cH. W. Lee, C. S. Lim, H. Choi, M. K. Cho, C.-K. Noh, K. Lee, S. J. Shin, H. M. Kim, Anal. Chem. 2019, 91, 14705–14711;
- 20dW. X. Ren, J. Han, S. Uhm, Y. J. Jang, C. Kang, J.-H. Kim, J. S. Kim, Chem. Commun. 2015, 51, 10403–10418;
- 20eH. S. Jung, J.-H. Lee, K. Kim, S. Koo, P. Verwilst, J. L. Sessler, C. Kang, J. S. Kim, J. Am. Chem. Soc. 2017, 139, 9972–9978;
- 20fK. Gu, Y. Xu, H. Li, Z. Guo, S. Zhu, S. Zhu, P. Shi, T. D. James, H. Tian, W.-H. Zhu, J. Am. Chem. Soc. 2016, 138, 5334–5340;
- 20gH. Li, Q. Yao, F. Xu, Y. Li, D. Kim, J. Chung, G. Baek, X. Wu, P. F. Hillman, E. Y. Lee, H. Ge, J. Fan, J. Wang, S.-J. Nam, X. Peng, J. Yoon, Angew. Chem. Int. Ed. 2020, 59, 10186–10195; Angew. Chem. 2020, 132, 10272–10281;
- 20hH. Li, Q. Yao, W. Sun, K. Shao, Y. Lu, J. Chung, D. Kim, J. Fan, S. Long, J. Du, Y. Li, J. Wang, J. Yoon, X. Peng, J. Am. Chem. Soc. 2020, 142, 6381–6389;
- 20iX. Zhou, H. Li, C. Shi, F. Xu, Z. Zhang, Q. Yao, H. Ma, W. Sun, K. Shao, J. Du, S. Long, J. Fan, J. Wang, X. Peng, Biomaterials 2020, 253, 120089;
- 20jR. Kumar, E.-J. Kim, J. Han, H. Lee, W. S. Shin, H. M. Kim, S. Bhuniya, J. S. Kim, K. S. Hong, Biomaterials 2016, 104, 119–128;
- 20kE.-J. Kim, R. Kumar, A. Sharma, B. Yoon, H. M. Kim, H. Lee, K. S. Hong, J. S. Kim, Biomaterials 2017, 122, 83–90.
- 21
- 21aJ. Zhang, X. Chai, X.-P. He, H.-J. Kim, J. Yoon, H. Tian, Chem. Soc. Rev. 2019, 48, 683–722;
- 21bH.-W. Liu, L. Chen, C. Xu, Z. Li, H. Zhang, X.-B. Zhang, W. Tan, Chem. Soc. Rev. 2018, 47, 7140–7180.
- 22D. Wu, L. Chen, Q. Xu, X. Chen, J. Yoon, Acc. Chem. Res. 2019, 52, 2158–2168.
- 23S. Kolemen, E. U. Akkaya, Coord. Chem. Rev. 2018, 354, 121–134.
- 24X. Wu, A. Shao, S. Zhu, Z. Guo, W. Zhu, Sci. China Chem. 2016, 59, 62–69.
- 25Y. Koide, Y. Urano, K. Hanaoka, W. Piao, M. Kusakabe, N. Saito, T. Terai, T. Okabe, T. Nagano, J. Am. Chem. Soc. 2012, 134, 5029–5031.
- 26X. Yang, C. Shi, R. Tong, W. Qian, H. E. Zhau, R. Wang, G. Zhu, J. Cheng, V. W. Yang, T. Cheng, M. Henary, L. Strekowski, L. W. K. Chung, Clin. Cancer Res. 2010, 16, 2833–2844.
- 27H.-Y. Ahn, S. Yao, X. Wang, K. D. Belfield, ACS Appl. Mater. Interfaces 2012, 4, 2847–2854.
- 28M. Li, J. Xia, R. Tian, J. Wang, J. Fan, J. Du, S. Long, X. Song, J. W. Foley, X. Peng, J. Am. Chem. Soc. 2018, 140, 14851–14859.
- 29X. Cai, B. Liu, Angew. Chem. Int. Ed. 2020, 59, 9868–9886; Angew. Chem. 2020, 132, 9952–9970.
- 30W. Sun, M. Li, J. Fan, X. Peng, Acc. Chem. Res. 2019, 52, 2818–2831.
- 31W. Chi, J. Chen, W. Liu, C. Wang, Q. Qi, Q. Qiao, T. M. Tan, K. Xiong, X. Liu, K. Kang, Y.-T. Chang, Z. Xu, X. Liu, J. Am. Chem. Soc. 2020, 142, 6777–6785.
- 32M. H. Lee, J. S. Kim, J. L. Sessler, Chem. Soc. Rev. 2015, 44, 4185–4191.
- 33L. Yuan, W. Lin, K. Zheng, S. Zhu, Acc. Chem. Res. 2013, 46, 1462–1473.
- 34Y. Tu, J. Liu, H. Zhang, Q. Peng, J. W. Y. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2019, 58, 14911–14914; Angew. Chem. 2019, 131, 15053–15056.
- 35F. Wang, Y. Zhu, L. Zhou, L. Pan, Z. Cui, Q. Fei, S. Luo, D. Pan, Q. Huang, R. Wang, C. Zhao, H. Tian, C. Fan, Angew. Chem. Int. Ed. 2015, 54, 7349–7353; Angew. Chem. 2015, 127, 7457–7461.
- 36Y. Ichikawa, M. Kamiya, F. Obata, M. Miura, T. Terai, T. Komatsu, T. Ueno, K. Hanaoka, T. Nagano, Y. Urano, Angew. Chem. Int. Ed. 2014, 53, 6772–6775; Angew. Chem. 2014, 126, 6890–6893.
- 37A. Chevalier, Y. Zhang, O. M. Khdour, J. B. Kaye, S. M. Hecht, J. Am. Chem. Soc. 2016, 138, 12009–12012.
- 38X. He, Y. Xu, W. Shi, H. Ma, Anal. Chem. 2017, 89, 3217–3221.
- 39H.-W. Liu, K. Li, X.-X. Hu, L. Zhu, Q. Rong, Y. Liu, X.-B. Zhang, J. Hasserodt, F.-L. Qu, W. Tan, Angew. Chem. Int. Ed. 2017, 56, 11788–11792; Angew. Chem. 2017, 129, 11950–11954.
- 40
- 40aH. Hino, M. Kamiya, K. Kitano, K. Mizuno, S. Tanaka, N. Nishiyama, K. Kataoka, Y. Urano, J. Nakajima, Transl. Oncol. 2016, 9, 203–210;
- 40bH. Li, Q. Yao, F. Xu, N. Xu, R. Duan, S. Long, J. Fan, J. Du, J. Wang, X. Peng, Biomaterials 2018, 179, 1–14;
- 40cC. Di Ilio, G. Polidoro, A. Arduini, A. Muccini, G. Federici, Biochem. Med. 1983, 29, 143–148;
- 40dM. S. Rao, M. Tatematsu, V. Subbarao, N. Ito, J. K. Reddy, Cancer Res. 1986, 46, 5287–5290.
- 41
- 41aA. M. Strasak, G. Goebel, H. Concin, R. M. Pfeiffer, L. J. Brant, G. Nagel, W. Oberaigner, N. Concin, G. Diem, E. Ruttmann, U. Gruber-Moesenbacher, F. Offner, A. Pompella, K. P. Pfeiffer, H. Ulmer, Cancer Res. 2010, 70, 3586–3593;
- 41bY. Urano, M. Sakabe, N. Kosaka, M. Ogawa, M. Mitsunaga, D. Asanuma, M. Kamiya, M. R. Young, T. Nagano, P. L. Choyke, H. Kobayashi, Sci. Transl. Med. 2011, 3, 110ra119.
- 42H. Ueo, Y. Shinden, T. Tobo, A. Gamachi, M. Udo, H. Komatsu, S. Nambara, T. Saito, M. Ueda, H. Hirata, S. Sakimura, Y. Takano, R. Uchi, J. Kurashige, S. Akiyoshi, T. Iguchi, H. Eguchi, K. Sugimachi, Y. Kubota, Y. Kai, K. Shibuta, Y. Kijima, H. Yoshinaka, S. Natsugoe, M. Mori, Y. Maehara, M. Sakabe, M. Kamiya, J. W. Kakareka, T. J. Pohida, P. L. Choyke, H. Kobayashi, H. Ueo, Y. Urano, K. Mimori, Sci. Rep. 2015, 5, 12080.
- 43R. J. Iwatate, M. Kamiya, K. Umezawa, H. Kashima, M. Nakadate, R. Kojima, Y. Urano, Bioconjugate Chem. 2018, 29, 241–244.
- 44H. Li, Q. Yao, F. Xu, N. Xu, W. Sun, S. Long, J. Du, J. Fan, J. Wang, X. Peng, Front. Chem. 2018, 6, 485.
- 45P. Zhang, X.-f. Jiang, X. Nie, Y. Huang, F. Zeng, X. Xia, S. Wu, Biomaterials 2016, 80, 46–56.
- 46L. Li, W. Shi, X. Wu, Q. Gong, X. Li, H. Ma, Biosens. Bioelectron. 2016, 81, 395–400.
- 47H. Liu, F. Liu, F. Wang, R.-Q. Yu, J.-H. Jiang, Analyst 2018, 143, 5530–5535.
- 48Z. Luo, L. Feng, R. An, G. Duan, R. Yan, H. Shi, J. He, Z. Zhou, C. Ji, H.-Y. Chen, D. Ye, Chem. Eur. J. 2017, 23, 14778–14785.
- 49Z. Luo, Z. Huang, K. Li, Y. Sun, J. Lin, D. Ye, H.-Y. Chen, Anal. Chem. 2018, 90, 2875–2883.
- 50B. Bai, C. Yan, Y. Zhang, Z. Guo, W.-H. Zhu, Chem. Commun. 2018, 54, 12393–12396.
- 51
- 51aR. Gupta, T. Govil, N. Capalash, P. Sharma, Appl. Biochem. Biotechnol. 2012, 168, 1681–1693;
- 51bM. Maksimainen, N. Hakulinen, J. M. Kallio, T. Timoharju, O. Turunen, J. Rouvinen, J. Struct. Biol. 2011, 174, 156–163.
- 52J. Zhang, C. Li, C. Dutta, M. Fang, S. Zhang, A. Tiwari, T. Werner, F.-T. Luo, H. Liu, Anal. Chim. Acta 2017, 968, 97–104.
- 53C.-H. Tung, Q. Zeng, K. Shah, D.-E. Kim, D. Schellingerhout, R. Weissleder, Cancer Res. 2004, 64, 1579–1583.
- 54D. Oushiki, H. Kojima, Y. Takahashi, T. Komatsu, T. Terai, K. Hanaoka, M. Nishikawa, Y. Takakura, T. Nagano, Anal. Chem. 2012, 84, 4404–4410.
- 55W. Fu, C. Yan, Y. Zhang, Y. Ma, Z. Guo, W.-H. Zhu, Front. Chem. 2019, 7, 291.
- 56L. Shi, C. Yan, Y. Ma, T. Wang, Z. Guo, W.-H. Zhu, Chem. Commun. 2019, 55, 12308–12311.
- 57X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao, K. Pu, Angew. Chem. Int. Ed. 2018, 57, 7804–7808; Angew. Chem. 2018, 130, 7930–7934.
- 58
- 58aM. Höckel, C. Knoop, K. Schlenger, B. Vorndran, E. Bauβnann, M. Mitze, P. G. Knapstein, P. Vaupel, Radiother. Oncol. 1993, 26, 45–50;
- 58bP. Vaupel, O. Thews, M. Hoeckel, Med. Oncol. 2001, 18, 243–259;
- 58cY. Liu, L. Teng, L. Chen, H. Ma, H.-W. Liu, X.-B. Zhang, Chem. Sci. 2018, 9, 5347–5353;
- 58dZ. Liu, F. Song, W. Shi, G. Gurzadyan, H. Yin, B. Song, R. Liang, X. Peng, ACS Appl. Mater. Interfaces 2019, 11, 15426–15435.
- 59Y. Shi, S. Zhang, X. Zhang, Analyst 2013, 138, 1952–1955.
- 60T. Guo, L. Cui, J. Shen, W. Zhu, Y. Xu, X. Qian, Chem. Commun. 2013, 49, 10820–10822.
- 61Z. Li, X. He, Z. Wang, R. Yang, W. Shi, H. Ma, Biosens. Bioelectron. 2015, 63, 112–116.
- 62D. Zhu, L. Xue, G. Li, H. Jiang, Sens. Actuators B 2016, 222, 419–424.
- 63Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, F. Li, J. Am. Chem. Soc. 2015, 137, 6407–6416.
- 64J. Zheng, Y. Shen, Z. Xu, Z. Yuan, Y. He, C. Wei, M. Er, J. Yin, H. Chen, Biosens. Bioelectron. 2018, 119, 141–148.
- 65F. Xu, H. Li, Q. Yao, H. Ge, J. Fan, W. Sun, J. Wang, X. Peng, Chem. Sci. 2019, 10, 10586–10594.
- 66J. Ouyang, L. Sun, Z. Zeng, C. Zeng, F. Zeng, S. Wu, Angew. Chem. Int. Ed. 2020, 59, 10111–10121; Angew. Chem. 2020, 132, 10197–10207.
- 67X. Zhao, S. Long, M. Li, J. Cao, Y. Li, L. Guo, W. Sun, J. Du, J. Fan, X. Peng, J. Am. Chem. Soc. 2020, 142, 1510–1517.
- 68
- 68aA. N. Santos, J. Langner, M. Herrmann, D. Riemann, Cell. Immunol. 2000, 201, 22–32;
- 68bJ. S. Shim, J. H. Kim, H. Y. Cho, Y. N. Yum, S. H. Kim, H.-J. Park, B. S. Shim, S. H. Choi, H. J. Kwon, Chem. Biol. 2003, 10, 695–704;
- 68cB. Bauvois, D. Dauzonne, Med. Res. Rev. 2006, 26, 88–130.
- 69
- 69aY. Aozuka, K. Koizumi, Y. Saitoh, Y. Ueda, H. Sakurai, I. Saiki, Cancer Lett. 2004, 216, 35–42;
- 69bR. Hata, H. Nonaka, Y. Takakusagi, K. Ichikawa, S. Sando, Angew. Chem. Int. Ed. 2016, 55, 1765–1768; Angew. Chem. 2016, 128, 1797–1800;
- 69cM. Terauchi, H. Kajiyama, K. Shibata, K. Ino, A. Nawa, S. Mizutani, F. Kikkawa, BMC Cancer 2007, 7, 140.
- 70X. He, Y. Hu, W. Shi, X. Li, H. Ma, Chem. Commun. 2017, 53, 9438–9441.
- 71
- 71aH. Li, X. Zhou, J. Fan, S. Long, J. Du, J. Wang, X. Peng, Sens. Actuators B 2018, 254, 709–718;
- 71bH.-J. Lee, C.-W. Cho, H. Seo, S. Singha, Y. W. Jun, K.-H. Lee, Y. Jung, K.-T. Kim, S. Park, S. C. Bae, K. H. Ahn, Chem. Commun. 2016, 52, 124–127;
- 71cJ. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister, Nat. Biotechnol. 1999, 17, 763–767;
- 71dH. Li, Q. Yao, F. Xu, N. Xu, X. Ma, J. Fan, S. Long, J. Du, J. Wang, X. Peng, Anal. Chem. 2018, 90, 4641–4648;
- 71eJ. Ning, W. Wang, G. Ge, P. Chu, F. Long, Y. Yang, Y. Peng, L. Feng, X. Ma, T. D. James, Angew. Chem. Int. Ed. 2019, 58, 9959–9963; Angew. Chem. 2019, 131, 10064–10068.
- 72H. Li, Y. Li, Q. Yao, J. Fan, W. Sun, S. Long, K. Shao, J. Du, J. Wang, X. Peng, Chem. Sci. 2019, 10, 1619–1625.
- 73M. Xiao, W. Sun, J. Fan, J. Cao, Y. Li, K. Shao, M. Li, X. Li, Y. Kang, W. Zhang, S. Long, J. Du, X. Peng, Adv. Funct. Mater. 2018, 28, 1805128.
- 74J. Huang, Y. Jiang, J. Li, S. He, J. Huang, K. Pu, Angew. Chem. Int. Ed. 2020, 59, 4415–4420; Angew. Chem. 2020, 132, 4445–4450.
- 75J. E. Coleman, Annu. Rev. Bioph. Biom. 1992, 21, 441–483.
- 76
- 76aP. L. Wolf, J. Clin. Lab. Anal. 1994, 8, 172–176;
- 76bS. R. Rao, A. E. Snaith, D. Marino, X. Cheng, S. T. Lwin, I. R. Orriss, F. C. Hamdy, C. M. Edwards, Br. J. Cancer 2017, 116, 227–236.
- 77H.-W. Liu, X.-X. Hu, L. Zhu, K. Li, Q. Rong, L. Yuan, X.-B. Zhang, W. Tan, Talanta 2017, 175, 421–426.
- 78X. Gao, G. Ma, C. Jiang, L. Zeng, S. Jiang, P. Huang, J. Lin, Anal. Chem. 2019, 91, 7112–7117.
- 79Q. Zhang, S. Li, C. Fu, Y. Xiao, P. Zhang, C. Ding, J. Mater. Chem. B 2019, 7, 443–450.
- 80X. Zhang, X. Chen, K. Liu, Y. Zhang, G. Gao, X. Huang, S. Hou, Anal. Chim. Acta 2020, 1094, 113–121.
- 81X. Jie, M. Wu, H. Yang, W. Wei, Anal. Chem. 2019, 91, 13174–13182.
- 82P. Zhang, C. Fu, Q. Zhang, S. Li, C. Ding, Anal. Chem. 2019, 91, 12377–12383.
- 83R. Yan, Y. Hu, F. Liu, S. Wei, D. Fang, A. J. Shuhendler, H. Liu, H.-Y. Chen, D. Ye, J. Am. Chem. Soc. 2019, 141, 10331–10341.
- 84M. Belinsky, A. K. Jaiswal, Cancer Metastasis Rev. 1993, 12, 103–117.
- 85N. Kwon, M. K. Cho, S. J. Park, D. Kim, S.-J. Nam, L. Cui, H. M. Kim, J. Yoon, Chem. Commun. 2017, 53, 525–528.
- 86C. Zhang, B.-B. Zhai, T. Peng, Z. Zhong, L. Xu, Q.-Z. Zhang, L.-Y. Li, L. Yi, Z. Xi, Dyes Pigm. 2017, 143, 245–251.
- 87W. C. Silvers, B. Prasai, D. H. Burk, M. L. Brown, R. L. McCarley, J. Am. Chem. Soc. 2013, 135, 309–314.
- 88S. U. Hettiarachchi, B. Prasai, R. L. McCarley, J. Am. Chem. Soc. 2014, 136, 7575–7578.
- 89Z. Shen, B. Prasai, Y. Nakamura, H. Kobayashi, M. S. Jackson, R. L. McCarley, ACS Chem. Biol. 2017, 12, 1121–1132.
- 90Q. Fei, L. Zhou, F. Wang, B. Shi, C. Li, R. Wang, C. Zhao, Dyes Pigm. 2017, 136, 846–851.
- 91Y. Zheng, D. Pan, Y. Zhang, Y. Zhang, Y. Shen, Anal. Chim. Acta 2019, 1090, 125–132.
- 92S. R. Punganuru, H. R. Madala, V. Arutla, R. Zhang, K. S. Srivenugopal, Sci. Rep. 2019, 9, 8577.
- 93
- 93aP. Verwilst, J. Han, J. Lee, S. Mun, H.-G. Kang, J. S. Kim, Biomaterials 2017, 115, 104–114;
- 93bY. Tian, Y. Li, W.-L. Jiang, D.-Y. Zhou, J. Fei, C.-Y. Li, Anal. Chem. 2019, 91, 10901–10907.
- 94K. Kiyose, K. Hanaoka, D. Oushiki, T. Nakamura, M. Kajimura, M. Suematsu, H. Nishimatsu, T. Yamane, T. Terai, Y. Hirata, J. Am. Chem. Soc. 2010, 132, 15846–15848.
- 95J. Huang, Y. Wu, F. Zeng, S. Wu, Theranostics 2019, 9, 7313.
- 96X.-B. Zhao, W. Ha, K. Gao, Y.-P. Shi, Anal. Chem. 2020, 92, 9039–9047.
- 97
- 97aA. Taylor, FASEB J. 1993, 7, 290–298;
- 97bM. B. Harbut, G. Velmourougane, S. Dalal, G. Reiss, J. C. Whisstock, O. Onder, D. Brisson, S. McGowan, M. Klemba, D. C. Greenbaum, Proc. Natl. Acad. Sci. USA 2011, 108, E526–E534.
- 98K. Gu, Y. Liu, Z. Guo, C. Lian, C. Yan, P. Shi, H. Tian, W.-H. Zhu, ACS Appl. Mater. Interfaces 2016, 8, 26622–26629.
- 99W. Zhang, F. Liu, C. Zhang, J.-G. Luo, J. Luo, W. Yu, L. Kong, Anal. Chem. 2017, 89, 12319–12326.
- 100X. He, L. Li, Y. Fang, W. Shi, X. Li, H. Ma, Chem. Sci. 2017, 8, 3479–3483.
- 101B. Wu, Y. Lin, B. Li, C. Zhan, F. Zeng, S. Wu, Anal. Chem. 2018, 90, 9359–9365.
- 102Y. Huang, Y. Qi, C. Zhan, F. Zeng, S. Wu, Anal. Chem. 2019, 91, 8085–8092.
- 103Y. Liu, L. Teng, C. Xu, H.-W. Liu, S. Xu, H. Guo, L. Yuan, X.-B. Zhang, Chem. Sci. 2019, 10, 10931–10936.
- 104M. Rolff, J. Schottenheim, H. Decker, F. Tuczek, Chem. Soc. Rev. 2011, 40, 4077–4098.
- 105
- 105aS. Osella-Abate, P. Savoia, P. Quaglino, M. T. Fierro, C. Leporati, M. Ortoncelli, M. G. Bernengo, Br. J. Cancer 2003, 89, 1457–1462;
- 105bC. Angeletti, V. Khomitch, R. Halaban, D. L. Rimm, Diagn. Cytopathol. 2004, 31, 33–37.
- 106L. Chai, J. Zhou, H. Feng, C. Tang, Y. Huang, Z. Qian, ACS Appl. Mater. Interfaces 2015, 7, 23564–23574.
- 107X. Li, W. Shi, S. Chen, J. Jia, H. Ma, O. S. Wolfbeis, Chem. Commun. 2010, 46, 2560–2562.
- 108P. Zhang, S. Li, C. Fu, Q. Zhang, Y. Xiao, C. Ding, Analyst 2019, 144, 5472–5478.
- 109Z. Li, Y.-F. Wang, C. Zeng, L. Hu, X.-J. Liang, Anal. Chem. 2018, 90, 3666–3669.
- 110C. Zhan, J. Cheng, B. Li, S. Huang, F. Zeng, S. Wu, Anal. Chem. 2018, 90, 8807–8815.
- 111Q. Li, C. Yan, J. Zhang, Z. Guo, W.-H. Zhu, Dyes Pigm. 2019, 162, 802–807.
- 112X. Wu, L. Li, W. Shi, Q. Gong, H. Ma, Angew. Chem. Int. Ed. 2016, 55, 14728–14732; Angew. Chem. 2016, 128, 14948–14952.
- 113J. Zhang, Z. Li, X. Tian, N. Ding, Chem. Commun. 2019, 55, 9463–9466.
- 114M. Peng, Y. Wang, Q. Fu, F. Sun, N. Na, J. Ouyang, Anal. Chem. 2018, 90, 6206–6213.
- 115
- 115aE. Segal, T. R. Prestwood, W. A. van der Linden, Y. Carmi, N. Bhattacharya, N. Withana, M. Verdoes, A. Habtezion, E. G. Engleman, M. Bogyo, Chem. Biol. 2015, 22, 148–158;
- 115bG. Blum, G. von Degenfeld, M. J. Merchant, H. M. Blau, M. Bogyo, Nat. Chem. Biol. 2007, 3, 668–677.
- 116
- 116aB. F. Sloane, S. Yan, I. Podgorski, B. E. Linebaugh, M. L. Cher, J. Mai, D. Cavallo-Medved, M. Sameni, J. Dosescu, K. Moin, Semin. Cancer Biol. 2005, 15, 149–157;
- 116bS. D. Mason, J. A. Joyce, Trends Cell Biol. 2011, 21, 228–237;
- 116cC. Jedeszko, B. F. Sloane, Biol. Chem. 2004, 385, 1017–1027.
- 117H. Lee, J. Kim, H. Kim, Y. Kim, Y. Choi, Chem. Commun. 2014, 50, 7507–7510.
- 118X. Chen, D. Lee, S. Yu, G. Kim, S. Lee, Y. Cho, H. Jeong, K. T. Nam, J. Yoon, Biomaterials 2017, 122, 130–140.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.