Endowing Zeolite LTA Superballs with the Ability to Manipulate Light in Multiple Ways
Jiawei Tao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorBingyu Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhongyuan Lu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorJiaqi Liu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorLina Su
CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhiyong Tang
CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Mei Li
Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS UK
Search for more papers by this authorCorresponding Author
Prof. Yan Xu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorJiawei Tao
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorBingyu Li
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhongyuan Lu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorJiaqi Liu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorLina Su
CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhiyong Tang
CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Mei Li
Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS UK
Search for more papers by this authorCorresponding Author
Prof. Yan Xu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012 P. R. China
Search for more papers by this authorAbstract
Advances in zeolites research emerging from interdisciplinary efforts have opened new opportunities beyond conventional applications. Colloids drive much current research owing to their distinct collective behaviors, but so far, using zeolites as a colloidal building block to construct ordered superstructures remains unexplored. Herein we show that self-assembly of colloidal zeolite LTA superball (ZAS) by tilted-angle sedimentation forms macroscopic films with micro-mesoporosity and 3D long-range periodicity featuring a photonic band gap (PBG) that is tunable through the superball geometry and responds reversibly to chemical vapors. Remarkably, self-assembly of ZAS at elevated temperature forms 3D chiral photonic crystals that enable negative circular dichroism, selective reflection of right-handed circularly polarized (CP) light and left-handed CP luminescence based on PBG. We present a novel class of functional colloids and zeolite-based photonic crystals with the ability to manipulate light in several ways.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202007064-sup-0001-misc_information.pdf5.1 MB | Supplementary |
ange202007064-sup-0001-VideoS1.mp41.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Wang, Q. Sun, J. Yu, Adv. Mater. 2019, 31, 1803966;
- 1bH. Lührs, J. Derr, R. X. Fischer, Microporous Mesoporous Mater. 2012, 151, 457–465.
- 2
- 2aC. Li, M. Moliner, A. Corma, Angew. Chem. Int. Ed. 2018, 57, 15330–15353; Angew. Chem. 2018, 130, 15554–15578;
- 2bB. Schulte, M. Tsotsalas, M. Becker, A. Studer, L. De Cola, Angew. Chem. Int. Ed. 2010, 49, 6881–6884; Angew. Chem. 2010, 122, 7033–7036;
- 2cH. Chen, Z. Yang, Z. Zhang, Z. Chen, M. Chi, S. Wang, J. Fu, S. Dai, Angew. Chem. Int. Ed. 2019, 58, 10626–10630; Angew. Chem. 2019, 131, 10736–10740;
- 2dM. Sun, S. Huang, L. Chen, Y. Li, X. Yang, Z. Yuan, B. L. Su, Chem. Soc. Rev. 2016, 45, 3479–3563.
- 3L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, G. A. Ozin, Adv. Mater. 2009, 21, 1641–1646.
- 4T. Babeva, H. Awala, M. Vasileva, J. El Fallah, K. Lazarova, S. Thomas, S. Mintova, Dalton Trans. 2014, 43, 8868–8876.
- 5
- 5aC. Pagis, A. R. Morgado Prates, D. Farrusseng, N. Bats, A. Tuel, Chem. Mater. 2016, 28, 5205–5223;
- 5bY. Zhang, S. Che, Chem. Eur. J. 2019, 25, 6196–6202.
- 6C. Dai, A. Zhang, M. Liu, L. Gu, X. Guo, C. Song, ACS Nano 2016, 10, 7401–7408.
- 7S. Y. Choi, Y. J. Lee, Y. S. Park, K. Ha, K. B. Yoon, J. Am. Chem. Soc. 2000, 122, 5201–5209.
- 8N. Vogel, M. Retsch, C. A. Fustin, A. Del Campo, U. Jonas, Chem. Rev. 2015, 115, 6265–6311.
- 9
- 9aD. Gur, B. A. Palmer, S. Weiner, L. Addadi, Adv. Funct. Mater. 2017, 27, 1603514;
- 9bJ. Ge, Y. Yin, Angew. Chem. Int. Ed. 2011, 50, 1492–1522; Angew. Chem. 2011, 123, 1530–1561;
- 9cJ. Hou, M. Li, Y. Song, Angew. Chem. Int. Ed. 2018, 57, 2544–2553; Angew. Chem. 2018, 130, 2571–2581;
- 9dY. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Chem. Soc. Rev. 2012, 41, 3297–3317.
- 10
- 10aX. Bouju, E. Duguet, F. Gauffre, C. R. Henry, M. L. Kahn, P. Melinon, S. Ravaine, Adv. Mater. 2018, 30, 1706558;
- 10bJ. Henzie, M. Grunwald, A. Widmer-Cooper, P. L. Geissler, P. Yang, Nat. Mater. 2012, 11, 131–137;
- 10cJ. Gong, R. S. Newman, M. Engel, M. Zhao, F. Bian, S. C. Glotzer, Z. Tang, Nat. Commun. 2017, 8, 14038.
- 11J. M. Meijer, V. Meester, F. Hagemans, H. N. W. Lekkerkerker, A. P. Philipse, A. V. Petukhov, Langmuir 2019, 35, 4946–4955.
- 12J. M. Meijer, A. Pal, S. Ouhajji, H. N. Lekkerkerker, A. P. Philipse, A. V. Petukhov, Nat. Commun. 2017, 8, 14352.
- 13
- 13aN. Yanai, S. Granick, Angew. Chem. Int. Ed. 2012, 51, 5638–5641; Angew. Chem. 2012, 124, 5736–5739;
- 13bC. Avci, I. Imaz, A. Carne-Sanchez, J. A. Pariente, N. Tasios, J. Perez-Carvajal, M. I. Alonso, A. Blanco, M. Dijkstra, C. Lopez, D. Maspoch, Nat. Chem. 2018, 10, 78–84;
- 13cC. Cui, Y. Liu, H. Xu, S. Li, W. Zhang, P. Cui, F. Huo, Small 2014, 10, 3672–3676.
- 14J. M. Meijer, Colloidal Crystals of Spheres and Cubes in Real and Reciprocal Space, Vol. 1, Utrecht University, The Netherlands, 2015, pp. 4–5.
- 15
- 15aH. Chen, J. Wydra, X. Zhang, P. S. Lee, Z. Wang, W. Fan, M. Tsapatsis, J. Am. Chem. Soc. 2011, 133, 12390–12393;
- 15bS. Mintova, N. H. Olson, V. Valtchev, T. Bein, Science 1999, 283, 958.
- 16D. Luo, C. Yan, T. Wang, Small 2015, 11, 5984–6008.
- 17C. Avci, Y. Liu, J. A. Pariente, A. Blanco, C. Lopez, I. Imaz, D. Maspoch, Small 2019, 15, 1902520.
- 18Y. Huang, J. Zhou, B. Su, L. Shi, J. Wang, S. Chen, L. Wang, J. Zi, Y. Song, L. Jiang, J. Am. Chem. Soc. 2012, 134, 17053–17058.
- 19A. Cychosz, M. Thommes, Engineering 2018, 4, 559–566.
- 20B. Said, T. Cacciaguerra, F. Tancret, F. Fajula, A. Galarneau, Microporous Mesoporous Mater. 2016, 227, 176–190.
- 21M. Tatlier, G. Munz, S. K. Henninger, Microporous Mesoporous Mater. 2018, 264, 70–75.
- 22L. Bai, Y. He, J. Zhou, Y. Lim, V. C. Mai, Y. Chen, S. Hou, Y. Zhao, J. Zhang, H. Duan, Adv. Opt. Mater. 2019, 7, 1900522.
- 23N. Katsonis, E. Lacaze, A. Ferrarini, J. Mater. Chem. 2012, 22, 7088.
- 24J. Lv, D. Ding, X. Yang, K. Hou, X. Miao, D. Wang, B. Kou, L. Huang, Z. Tang, Angew. Chem. Int. Ed. 2019, 58, 7783–7787; Angew. Chem. 2019, 131, 7865–7869.
- 25H. Zheng, W. Li, W. Li, X. Wang, Z. Tang, S. X. Zhang, Y. Xu, Adv. Mater. 2018, 30, 1705948.
- 26M. Thiel, H. Fischer, G. von Freymann, M. Wegener, Opt. Lett. 2010, 35, 166–168.
- 27H. C. Gurvinder Singh, A. Baskin, E. Gelman, N. Repnin, P. Král, R. Klajn, Science 2014, 345, 1149.
- 28L. Rossi, S. Sacanna, W. T. M. Irvine, P. M. Chaikin, D. J. Pineb, A. P. Philipse, Soft Matter 2011, 7, 4139–4142.
- 29
- 29aY. Sang, J. Han, T. Zhao, P. Duan, M. Liu, Adv. Mater. 2020, 32, 1900110;
- 29bF. Song, Z. Zhao, Z. Liu, J. Lam, B. Z. Tang, J. Mater. Chem. C 2020, 8, 3284.
- 30O. Fenwick, E. Coutino-Gonzalez, D. Grandjean, W. Baekelant, F. Richard, S. Bonacchi, D. De Vos, P. Lievens, M. Roeffaers, J. Hofkens, P. Samori, Nat. Mater. 2016, 15, 1017–1022.
- 31G. Lakhwani, S. C. J. Meskers, J. Phys. Chem. Lett. 2011, 2, 1497–1501.
- 32J. P. Riehl, Chem. Rev. 1986, 86, 1.
- 33
- 33aI. E. Psarobas, Opt. Commun. 1999, 162, 21–25;
- 33bH. Zheng, B. Ju, X. Wang, W. Wang, M. Li, Z. Tang, S. X. A. Zhang, Y. Xu, Adv. Opt. Mater. 2018, 6, 1801246.
- 34P. Linse, Soft Matter 2015, 11, 3900–3912.
- 35B. C. Knott, C. T. Nimlos, D. J. Robichaud, M. R. Nimlos, S. Kim, R. Gounder, ACS Catal. 2018, 8, 770–784.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.