para-Selective Arylation of Arenes: A Direct Route to Biaryls by Norbornene Relay Palladation
Dr. Uttam Dutta
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
These authors contributed equally to this work.
Search for more papers by this authorSandip Porey
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
These authors contributed equally to this work.
Search for more papers by this authorSandeep Pimparkar
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Search for more papers by this authorAstam Mandal
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Search for more papers by this authorJagrit Grover
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Search for more papers by this authorAdithyaraj Koodan
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Search for more papers by this authorCorresponding Author
Dr. Debabrata Maiti
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Tokyo, 152-8550 Japan
Search for more papers by this authorDr. Uttam Dutta
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
These authors contributed equally to this work.
Search for more papers by this authorSandip Porey
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
These authors contributed equally to this work.
Search for more papers by this authorSandeep Pimparkar
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Search for more papers by this authorAstam Mandal
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Search for more papers by this authorJagrit Grover
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Search for more papers by this authorAdithyaraj Koodan
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Search for more papers by this authorCorresponding Author
Dr. Debabrata Maiti
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Tokyo, 152-8550 Japan
Search for more papers by this authorDedicated to Professor Sourav Pal on the occasion of his 65th birthday
Abstract
Biaryl compounds are extremely important structural motifs in natural products, biologically active components and pharmaceuticals. Selective synthesis of biaryls by distinguishing the subtle reactivity difference of distal arene C−H bonds are significantly challenging. Herein, we describe para-selective C−H arylation, which is acheived by a unique combination of a meta-directing group and norbornene as a transient mediator. Upon direct meta-C−H palladation, one-bond relay palladation occurs in presence of norbornene and subsequently para-C−H arylation is achieved for sulfonates, phosphonates and phenols bearing 2,6-disubstitution patterns. The protocol is amenable to electron-deficient aryl iodides. Multisubstituted arenes and phenols are obtained by postsynthetic modification of the products. The protocol allows the synthesis of hexa-substituted benzene by sequential selective distal C−H functionalization.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202005664-sup-0001-misc_information.pdf10.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected publications, see:
- 1aL. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885–1898;
- 1bJ. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369–375;
- 1cD. J. Abrams, P. A. Provencher, E. J. Sorensen, Chem. Soc. Rev. 2018, 47, 8925–8967;
- 1dA. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948–15982; Angew. Chem. 2018, 130, 16178–16214;
- 1eJ. W. Lee, K. N. Lee, M.-Y. Ngai, Angew. Chem. Int. Ed. 2019, 58, 11171–11180; Angew. Chem. 2019, 131, 11289–11299;
- 1fK. N. Lee, M.-Y. Ngai, Chem. Commun. 2017, 53, 13093–13112;
- 1gD. Qian, J. Sun, Chem. Eur. J. 2019, 25, 3740–3751;
- 1hJ. Li, S. Grosslight, S. J. Miller, M. S. Sigman, F. D. Toste, ACS Catal. 2019, 9, 9794–9799;
- 1iA. J. Metrano, S. J. Miller, Acc. Chem. Res. 2019, 52, 199–215;
- 1jS. Govaerts, A. Nyuchev, T. Noel, J. Flow Chem. 2020, 10, 13–71.
- 2Selected examples on DG assisted ortho-functionalization:
- 2aS. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani, Nature 1993, 366, 529–531;
- 2bT. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169;
- 2cN. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236–10254; Angew. Chem. 2012, 124, 10382–10401;
- 2dG. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 11726–11743; Angew. Chem. 2013, 125, 11942–11959;
- 2eL. Ackermann, Acc. Chem. Res. 2014, 47, 281–295;
- 2fZ. Huang, H. N. Lim, F. Mo, M. C. Young, G. Dong, Chem. Soc. Rev. 2015, 44, 7764–7786;
- 2gB. J. Knight, J. O. Rothbaum, E. M. Ferreira, Chem. Sci. 2016, 7, 1982–1987;
- 2hT. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45, 2900–2936;
- 2iQ. Li, B. J. Knight, Chem. Eur. J. 2016, 22, 13054–13058;
- 2jB. Li, K. Seth, B. Niu, L. Pan, H. Yang, H. Ge, Angew. Chem. Int. Ed. 2018, 57, 3401–3405; Angew. Chem. 2018, 130, 3459–3463;
- 2kC. Sambiagio, D. Schonbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M. Schnurch, Chem. Soc. Rev. 2018, 47, 6603–6743;
- 2lB. Niu, K. Yang, B. Lawrence, H. Ge, ChemSusChem 2019, 12, 2955–2969;
- 2mH. Kim, R. S. Thombal, H. D. Khanal, Y. R. Lee, Chem. Commun. 2019, 55, 13402–13405;
- 2nR. S. Thombal, Y. R. Lee, Org. Lett. 2020, 22, 3397–3401.
- 3Selected reports on meta-C−H functionalization:
- 3aT. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 390–391;
- 3bR. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593–1597;
- 3cO. Saidi, J. Marafie, A. E. W. Ledger, P. M. Liu, M. F. Mahon, G. Kociok-Köhn, M. K. Whittlesey, C. G. Frost, J. Am. Chem. Soc. 2011, 133, 19298–19301;
- 3dJ. Cornella, M. Righi, I. Larrosa, Angew. Chem. Int. Ed. 2011, 50, 9429–9432; Angew. Chem. 2011, 123, 9601–9604;
- 3eD. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518–522;
- 3fN. Hofmann, L. Ackermann, J. Am. Chem. Soc. 2013, 135, 5877–5884;
- 3gM. Tobisu, N. Chatani, Science 2014, 343, 850–851;
- 3hY. Kuninobu, H. Ida, M. Nishi, M. A. Kanai, Nat. Chem. 2015, 7, 712–717;
- 3iM. Bera, A. Maji, S. K. Sahoo, D. Maiti, Angew. Chem. Int. Ed. 2015, 54, 8515–8519; Angew. Chem. 2015, 127, 8635–8639;
- 3jS. Li, H. Ji, L. Cai, G. Li, Chem. Sci. 2015, 6, 5595–5600;
- 3kR. Bisht, B. Chattopadhyay, J. Am. Chem. Soc. 2016, 138, 84–87;
- 3lS. Li, L. Cai, H. Ji, L. Yang, G. Li, Nat. Commun. 2016, 7, 10443–10450;
- 3mH. P. L. Gemoets, G. Laudadio, K. Verstraete, V. Hessel, T. Noël, Angew. Chem. Int. Ed. 2017, 56, 7161–7165; Angew. Chem. 2017, 129, 7267–7271;
- 3nU. Dutta, A. Modak, B. Bhaskararao, M. Bera, S. Bag, A. Mondal, D. W. Lupton, R. B. Sunoj, D. Maiti, ACS Catal. 2017, 7, 3162–3168;
- 3oS. Li, H. Wang, Y. Weng, G. Li, Angew. Chem. Int. Ed. 2019, 58, 18502–18507; Angew. Chem. 2019, 131, 18673–18678;
- 3pS. Porey, X. Zhang, S. Bhowmick, V. Singh, S. Guin, R. S. Paton, D. Maiti, J. Am. Chem. Soc. 2020, 142, 3762–3774;
- 3qG. R. Genov, J. L. Douthwaite, A. S. K. Lahdenperä, D. C. Gibson, R. J. Phipps, Science 2020, 367, 1246–1251;
- 3rS. Bag, M. Petzold, A. Sur, S. Bhowmick, D. B. Werz, D. Maiti, Chem. Eur. J. 2019, 25, 9433–9437;
- 3sM. Brochetta, T. Borsari, S. Bag, S. Jana, S. Maiti, A. Porta, D. B. Werz, G. Zanoni, D. Maiti, Chem. Eur. J. 2019, 25, 10323–10327.
- 4Selected examples on para-C−H functionalization:
- 4aG. Brasche, J. Garcia-Fortanet, S. L. Buchwald, Org. Lett. 2008, 10, 2207–2210;
- 4bK. Sun, Y. Li, T. Xiong, J. Zhang, Q. Zhang, J. Am. Chem. Soc. 2011, 133, 1694–1697;
- 4cX. Guo, C.-J. Li, Org. Lett. 2011, 13, 4977–4979;
- 4dX. Wang, D. Leow, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 13864–13867;
- 4eW. C.-L. Ciana, R. J. Phipps, J. R. Brandt, F.-M. Meyer, M. J. Gaunt, Angew. Chem. Int. Ed. 2011, 50, 458–462; Angew. Chem. 2011, 123, 478–482;
- 4fT. Ball, G. C. Lloyd-Jones, C. A. Russell, Science 2012, 337, 1644–1648;
- 4gJ. P. Brand, J. Waser, Org. Lett. 2012, 14, 744–748;
- 4hW. Liu, L. Ackermann, Org. Lett. 2013, 15, 3484–3486;
- 4iL. X. C. Cambeiro, T. C. Boorman, P. Lu, I. Larrosa, Angew. Chem. Int. Ed. 2013, 52, 1781–1784; Angew. Chem. 2013, 125, 1825–1828;
- 4jA. M. Suess, M. Z. Ertem, C. J. Cramer, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 9797–9804;
- 4kZ. Yu, B. Ma, M. Chen, H.-H. Wu, L. Liu, J. Zhang, J. Am. Chem. Soc. 2014, 136, 6904–6907;
- 4lY. Xi, Y. Su, Z. Yu, B. Dong, E. J. McClain, Y. Lan, X. Shi, Angew. Chem. Int. Ed. 2014, 53, 9817–9821; Angew. Chem. 2014, 126, 9975–9979;
- 4mG. B. Boursalian, W. S. Ham, A. R. Mazzotti, T. Ritter, Nat. Chem. 2016, 8, 810–815;
- 4nB. Ma, Z. Chu, B. Huang, Z. Liu, L. Liu, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 2749–2753; Angew. Chem. 2017, 129, 2793–2797;
- 4oY.-X. Luan, T. Zhang, W.-W. Yao, K. Lu, L.-Y. Kong, Y.-T. Lin, M. Ye, J. Am. Chem. Soc. 2017, 139, 1786–1789;
- 4pJ.-M. Li, Y.-H. Wang, Y. Yu, R.-B. Wu, J. Weng, G. Lu, ACS Catal. 2017, 7, 2661–2667;
- 4qM. T. Mihai, B. D. Williams, R. J. Phipps, J. Am. Chem. Soc. 2019, 141, 15477–15482;
- 4rT. Adak, J. Schulmeister, M. C. Dietl, M. Rudolph, F. Rominger, A. S. K. Hashmi, Eur. J. Org. Chem. 2019, 3867–3876;
- 4sF. de Azambuja, M.-H. Yang, T. Feoktistova, M. Selvaraju, A. C. Brueckner, M. A. Grove, S. Koley, P. H.-Y. Cheong, R. A. Altman, Nat. Chem. 2020, 12, 489–496.
- 5
- 5aY. Saito, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 5193–5198;
- 5bB. E. Haines, Y. Saito, Y. Segawa, K. Itami, D. G. Musaev, ACS Catal. 2016, 6, 7536–7546.
- 6M. E. Hoque, R. Bisht, C. Haldar, B. Chattopadhyay, J. Am. Chem. Soc. 2017, 139, 7745–7748.
- 7
- 7aY. Nakao, Y. Yamada, N. Kashihara, T. Hiyama, J. Am. Chem. Soc. 2010, 132, 13666–13668;
- 7bC.-C. Tsai, W.-C. Shih, C.-H. Fang, C.-Y. Li, T.-G. Ong, G. P. A. Yap, J. Am. Chem. Soc. 2010, 132, 11887–11889.
- 8
- 8aS. Okumura, S. Tang, T. Saito, K. Semba, S. Sakaki, Y. Nakao, J. Am. Chem. Soc. 2016, 138, 14699–14704;
- 8bL. Yang, K. Semba, Y. Nakao, Angew. Chem. Int. Ed. 2017, 56, 4853–4857; Angew. Chem. 2017, 129, 4931–4935;
- 8cS. Okumura, Y. Nakao, Org. Lett. 2017, 19, 584–587.
- 9
- 9aJ. A. Leitch, C. L. McMullin, A. J. Paterson, M. F. Mahon, Y. Bhonoah, C. G. Frost, Angew. Chem. Int. Ed. 2017, 56, 15131–15135; Angew. Chem. 2017, 129, 15327–15331;
- 9bC. Yuan, L. Zhu, C. Chen, X. Chen, Y. Yang, Y. Lan, Y. Zhao, Nat. Commun. 2018, 9, 1189;
- 9cC. Yuan, L. Zhu, R. Zeng, Y. Lan, Y. Zhao, Angew. Chem. Int. Ed. 2018, 57, 1277–1281; Angew. Chem. 2018, 130, 1291–1295.
- 10
- 10aS. Bag, T. Patra, A. Modak, A. Deb, S. Maity, U. Dutta, A. Dey, R. Kancherla, A. Maji, A. Hazra, M. Bera, D. Maiti, J. Am. Chem. Soc. 2015, 137, 11888–11891;
- 10bT. Patra, S. Bag, R. Kancherla, A. Mondal, A. Dey, S. Pimparkar, S. Agasti, A. Modak, D. Maiti, Angew. Chem. Int. Ed. 2016, 55, 7751–7755; Angew. Chem. 2016, 128, 7882–7886;
- 10cA. Maji, S. Guin, S. Feng, A. Dahiya, V. K. Singh, P. Liu, D. Maiti, Angew. Chem. Int. Ed. 2017, 56, 14903–14907; Angew. Chem. 2017, 129, 15099–15103;
- 10dA. Maji, A. Dahiya, G. Lu, T. Bhattacharya, M. Brochetta, G. Zanoni, P. Liu, D. Maiti, Nat. Commun. 2018, 9, 3582;
- 10eM. Li, M. Shang, H. Xu, X. Wang, H.-X. Dai, J.-Q. Yu, Org. Lett. 2019, 21, 540–544;
- 10fS. Pimparkar, T. Bhattacharya, A. Maji, A. Saha, R. Jayarajan, U. Dutta, G. Lu, D. W. Lupton, D. Maiti, Chem. Eur. J. 2020, https://doi.org/10.1002/chem.202001368.
- 11U. Dutta, S. Maiti, S. Pimparkar, S. Maiti, L. R. Gahan, E. H. Krenske, D. W. Lupton, D. Maiti, Chem. Sci. 2019, 10, 7426–7432.
- 12H. Shi, Y. Lu, J. Weng, K. L. Bay, X. Chen, K. Tanaka, P. Verma, K. N. Houk, J.-Q. Yu, Nat. Chem. 2020, 12, 399–404.
- 13
- 13aR. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57, 5845–5859;
- 13bM. Simonetti, D. M. Cannas, X. Just-Baringo, I. J. Vitorica-Yrezabal, I. Larrosa, Nat. Chem. 2018, 10, 724–731.
- 14J. L. Segura, N. Martín, J. Mater. Chem. 2000, 10, 2403–2435.
- 15
- 15aM. Catellani, F. Frignani, A. Rangoni, Angew. Chem. Int. Ed. Engl. 1997, 36, 119–122; Angew. Chem. 1997, 109, 142–145;
- 15bM. Catellani, Synlett 2003, 3, 298–313;
- 15cA. Martins, B. Mariampillai, M. Lautens, Top. Curr. Chem. 2009, 292, 1–33;
- 15dD. I. Chai, P. Thansandote, M. Lautens, Chem. Eur. J. 2011, 17, 8175–8188;
- 15eZ. Dong, G. Dong, J. Am. Chem. Soc. 2013, 135, 18350–18353;
- 15fJ. Ye, M. Lautens, Nat. Chem. 2015, 7, 863–870;
- 15gN. Della Ca’, M. Fontana, E. Motti, M. Catellani, Acc. Chem. Res. 2016, 49, 1389–1400;
- 15hQ. Li, E. M. Ferreira, Chem. Eur. J. 2017, 23, 11519–11523;
- 15iJ. Wang, R. Li, Z. Dong, P. Liu, G. Dong, Nat. Chem. 2018, 10, 866–872;
- 15jR. Li, G. Dong, Angew. Chem. Int. Ed. 2018, 57, 1697–1701; Angew. Chem. 2018, 130, 1713–1717;
- 15kG. Qian, M. Bai, S. Gao, H. Chen, S. Zhou, H.-G. Chen, W. Yan, Q. Zhou, Angew. Chem. Int. Ed. 2018, 57, 10980–10984; Angew. Chem. 2018, 130, 11146–11150;
- 15lZ.-S. Liu, Q. Gao, H.-G. Cheng, Q. Zhou, Chem. Eur. J. 2018, 24, 15461–15476;
- 15mJ. Wang, G. Dong, Chem. Rev. 2019, 119, 7478–7528;
- 15nH.-G. Cheng, S. Chen, R. Chen, Q. Zhou, Angew. Chem. Int. Ed. 2019, 58, 5832–5844; Angew. Chem. 2019, 131, 5890–5902;
- 15oQ. Gao, Y. Shang, F. Song, F. J. Ye, Z.-S. Liu, L. Li, H.-G. Cheng, Q. Zhou, J. Am. Chem. Soc. 2019, 141, 15986–15993;
- 15pS. Chen, P. Wang, H.-G. Cheng, C. Yang, Q. Zhou, Chem. Sci. 2019, 10, 8384–8389;
- 15qJ. Wang, Y. Zhou, X. Xu, P. Liu, G. Dong, J. Am. Chem. Soc. 2020, 142, 3050–3059.
- 16
- 16aZ. Dong, J. Wang, G. Dong, J. Am. Chem. Soc. 2015, 137, 5887–5890;
- 16bP.-X. Shen, X.-C. Wang, P. Wang, R.-Y. Zhu, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 11574–11577;
- 16cX.-C. Wang, W. Gong, L.-Z. Fang, R.-Y. Zhu, S. Li, K. M. Engle, J.-Q. Yu, Nature 2015, 519, 334–338;
- 16dH. Shi, A. N. Herron, Y. Shao, Q. Shao, J.-Q. Yu, Nature 2018, 558, 581–586.
- 17
- 17aD. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27–50;
- 17bW. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029–3070.
- 18
- 18aW. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. 1961, 83, 1733–1738;
- 18bJ. Boutagy, R. Thomas, Chem. Rev. 1974, 74, 87–99.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.