Effective Utilization of NIR Wavelengths for Photo-Controlled Polymerization: Penetration Through Thick Barriers and Parallel Solar Syntheses
Zilong Wu
Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Dr. Kenward Jung
Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Cyrille Boyer
Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorZilong Wu
Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Dr. Kenward Jung
Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Cyrille Boyer
Centre for Advanced Macromolecular Design, Australian Centre for Nanomedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorAbstract
This contribution details an efficient and controlled photopolymerization regulated by far-red (λ=680 nm) and NIR (λ=780 and 850 nm) light in the presence of aluminium phthalocyanine and aluminium naphthalocyanine. Initiating radicals are generated by photosensitization of peroxides affording an effective strategy that provides controlled polymerization of a variety of monomers with excellent living characteristics. Critically, long wavelength irradiation provides penetration through thick barriers, affording unprecedented rates of controlled polymerization that can open new and exciting applications. Furthermore, a more optimized approach to performing solar syntheses is presented. By combining the narrow Q-bands of these photocatalysts with others possessing complementary absorptions, layered, independent polymerizations and organic transformations may be performed in parallel under a single broadband emission source, such as sunlight.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201912484-sup-0001-misc_information.pdf3.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Ciamician, Science 1912, 36, 385–394.
- 2
- 2aN. S. Lewis, Science 2007, 315, 798–801;
- 2bA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 3
- 3aH. D. Roth, Angew. Chem. Int. Ed. Engl. 1989, 28, 1193–1207; Angew. Chem. 1989, 101, 1220–1234;
- 3bV. Balzani, G. Bergamini, P. Ceroni, Angew. Chem. Int. Ed. 2015, 54, 11320–11337; Angew. Chem. 2015, 127, 11474–11492;
- 3cD. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem. Rev. 2016, 116, 10276–10341;
- 3dK. Glusac, Nat. Chem. 2016, 8, 734.
- 4
- 4aJ. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102–113;
- 4bJ. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828–6838; Angew. Chem. 2012, 124, 6934–6944;
- 4cC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363.
- 5
- 5aS. Chatani, C. J. Kloxin, C. N. Bowman, Polym. Chem. 2014, 5, 2187–2201;
- 5bM. Chen, M. Zhong, J. A. Johnson, Chem. Rev. 2016, 116, 10167–10211.
- 6
- 6aR. Langer, D. A. Tirrell, Nature 2004, 428, 487–492;
- 6bJ. Niu, D. J. Lunn, A. Pusuluri, J. I. Yoo, M. A. O'Malley, S. Mitragotri, H. T. Soh, C. J. Hawker, Nat. Chem. 2017, 9, 537;
- 6cB. S. Tucker, M. L. Coughlin, C. A. Figg, B. S. Sumerlin, ACS Macro Lett. 2017, 6, 452–457;
- 6dT. Lueckerath, T. Strauch, K. Koynov, C. Barner-Kowollik, D. Y. W. Ng, T. Weil, Biomacromolecules 2019, 20, 212–221.
- 7
- 7aB. P. Fors, C. J. Hawker, Angew. Chem. Int. Ed. 2012, 51, 8850–8853; Angew. Chem. 2012, 124, 8980–8983;
- 7bD. Konkolewicz, K. Schröder, J. Buback, S. Bernhard, K. Matyjaszewski, ACS Macro Lett. 2012, 1, 1219–1223;
- 7cX. Pan, M. Lamson, J. Yan, K. Matyjaszewski, ACS Macro Lett. 2015, 4, 192–196;
- 7dX. Pan, C. Fang, M. Fantin, N. Malhotra, W. Y. So, L. A. Peteanu, A. A. Isse, A. Gennaro, P. Liu, K. Matyjaszewski, J. Am. Chem. Soc. 2016, 138, 2411–2425;
- 7eL. Shen, Q. Lu, A. Zhu, X. Lv, Z. An, ACS Macro Lett. 2017, 6, 625–631.
- 8
- 8aB. Strehmel, C. Schmitz, K. Cremanns, J. Göttert, Chem. Eur. J. 2019, 25, 12855–12864;
- 8bY. Yagci, S. Jockusch, N. J. Turro, Macromolecules 2010, 43, 6245–6260;
- 8cE. H. Discekici, A. Anastasaki, J. Read de Alaniz, C. J. Hawker, Macromolecules 2018, 51, 7421–7434;
- 8dS. Shanmugam, J. Xu, C. Boyer, Angew. Chem. Int. Ed. 2016, 55, 1036–1040; Angew. Chem. 2016, 128, 1048–1052;
- 8eN. Corrigan, J. Xu, C. Boyer, Macromolecules 2016, 49, 3274–3285;
- 8fC. Ding, J. Wang, W. Zhang, X. Pan, Z. Zhang, W. Zhang, J. Zhu, X. Zhu, Polym. Chem. 2016, 7, 7370–7374;
- 8gM. K. Darani, S. Bastani, M. Ghahari, P. Kardar, E. Mohajerani, Prog. Org. Coat. 2017, 104, 97–103;
- 8hA. H. Bonardi, F. Dumur, T. M. Grant, G. Noirbent, D. Gigmes, B. H. Lessard, J. P. Fouassier, J. Lalevée, Macromolecules 2018, 51, 1314–1324;
- 8iC. Kütahya, C. Schmitz, V. Strehmel, Y. Yagci, B. Strehmel, Angew. Chem. Int. Ed. 2018, 57, 7898–7902; Angew. Chem. 2018, 130, 8025–8030;
- 8jH. Cao, G. Wang, Y. Xue, G. Yang, J. Tian, F. Liu, W. Zhang, ACS Macro Lett. 2019, 8, 616–622;
- 8kK. K. Childress, K. Kim, D. J. Glugla, C. B. Musgrave, C. N. Bowman, J. W. Stansbury, Macromolecules 2019, 52, 4968–4978;
- 8lC. Schmitz, Y. Pang, A. Gülz, M. Gläser, J. Horst, M. Jäger, B. Strehmel, Angew. Chem. Int. Ed. 2019, 58, 4400–4404; Angew. Chem. 2019, 131, 4445–4450;
- 8mZ. Li, X. Zou, F. Shi, R. Liu, Y. Yagci, Nat. Commun. 2019, 10, 3560;
- 8nZ. Li, J. Zhu, X. Guan, R. Liu, Y. Yagci, Macromol. Rapid Commun. 2019, 40, 1900047;
- 8oB. D. Ravetz, A. B. Pun, E. M. Churchill, D. N. Congreve, T. Rovis, L. M. Campos, Nature 2019, 565, 343–346.
- 9J. Elisseeff, K. Anseth, D. Sims, W. McIntosh, M. Randolph, R. Langer, Proc. Natl. Acad. Sci. USA 1999, 96, 3104–3107.
- 10M. P. Thekaekara, Solar Energy 1976, 18, 309–325.
- 11
- 11aP. Esser, B. Pohlmann, H.-D. Scharf, Angew. Chem. Int. Ed. Engl. 1994, 33, 2009–2023; Angew. Chem. 1994, 106, 2093–2108;
- 11bT. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527;
- 11cD. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176;
- 11dM. Oelgemöller, Chem. Rev. 2016, 116, 9664–9682.
- 12
- 12aT. G. Gantchev, W. M. Sharman, J. E. Van Lier, Photochem. Photobiol. 2003, 77, 469–479;
- 12bT. G. Gantchev, J. E. van Lier, Chem. Phys. Lett. 2003, 369, 627–634.
- 13N. D. Dolinski, Z. A. Page, E. H. Discekici, D. Meis, I.-H. Lee, G. R. Jones, R. Whitfield, X. Pan, B. G. McCarthy, S. Shanmugam, V. Kottisch, B. P. Fors, C. Boyer, G. M. Miyake, K. Matyjaszewski, D. M. Haddleton, J. R. de Alaniz, A. Anastasaki, C. J. Hawker, J. Polym. Sci. Part A 2019, 57, 268–273.
- 14J. Jiang, G. Ye, F. Lorandi, Z. Liu, Y. Liu, T. Hu, J. Chen, Y. Lu, K. Matyjaszewski, Angew. Chem. Int. Ed. 2019, 58, 12096–12101; Angew. Chem. 2019, 131, 12224–12229.
- 15
- 15aN. Robertson, Angew. Chem. Int. Ed. 2006, 45, 2338–2345; Angew. Chem. 2006, 118, 2398–2405;
- 15bB. E. Hardin, H. J. Snaith, M. D. McGehee, Nat. Photonics 2012, 6, 162.
- 16J. Xu, K. Jung, A. Atme, S. Shanmugam, C. Boyer, J. Am. Chem. Soc. 2014, 136, 5508–5519.
- 17
- 17aI.-H. Lee, E. H. Discekici, A. Anastasaki, J. R. de Alaniz, C. J. Hawker, Polym. Chem. 2017, 8, 3351–3356;
- 17bC. A. Figg, J. D. Hickman, G. M. Scheutz, S. Shanmugam, R. N. Carmean, B. S. Tucker, C. Boyer, B. S. Sumerlin, Macromolecules 2018, 51, 1370–1376.
- 18C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J. Stephenson, J. Am. Chem. Soc. 2012, 134, 8875–8884.
- 19
- 19aC. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49, 1540–1573; Angew. Chem. 2010, 122, 1584–1617;
- 19bM. J. Kade, D. J. Burke, C. J. Hawker, J. Polym. Sci. Part A 2010, 48, 743–750;
- 19cM. A. Tasdelen, Y. Yagci, Angew. Chem. Int. Ed. 2013, 52, 5930–5938; Angew. Chem. 2013, 125, 6044–6053.
- 20C. G. Claessens, U. Hahn, T. Torres, Chem. Rec. 2008, 8, 75–97.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.