Imidazotetrazines as Weighable Diazomethane Surrogates for Esterifications and Cyclopropanations
Correction(s) for this article
-
Addendum: Imidazotetrazines as Weighable Diazomethane Surrogates for Esterifications and Cyclopropanations
- Volume 133Issue 41Angewandte Chemie
- pages: 22279-22279
- First Published online: September 27, 2021
Riley L. Svec
Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801 USA
Search for more papers by this authorCorresponding Author
Prof. Paul J. Hergenrother
Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801 USA
Search for more papers by this authorRiley L. Svec
Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801 USA
Search for more papers by this authorCorresponding Author
Prof. Paul J. Hergenrother
Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801 USA
Search for more papers by this authorAbstract
Diazomethane is one of the most versatile reagents in organic synthesis, but its utility is limited by its hazardous nature. Although alternative methods exist to perform the unique chemistry of diazomethane, these suffer from diminished reactivity and/or correspondingly harsher conditions. Herein, we describe the repurposing of imidazotetrazines (such as temozolomide, TMZ, the standard of care for glioblastoma) for use as synthetic precursors of alkyl diazonium reagents. TMZ was employed to conduct esterifications and metal-catalyzed cyclopropanations, and results show that methyl ester formation from a wide variety of substrates is especially efficient and operationally simple. TMZ is a commercially available solid that is non-explosive and non-toxic, and should find broad utility as a replacement for diazomethane.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201911896-sup-0001-misc_information.pdf5.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. H. Black, Aldrichimica Acta 1983, 16, 3–10.
- 2D. Dallinger, C. O. Kappe, Aldrichimica Acta 2016, 49, 57–66.
- 3Diazomethane (MAK Value Documentation, 1999) in The MAK-Collection for Occupational Health and Safety 2012, 142–148.
- 4R. Schoental, Nature 1960, 188, 420–421.
- 5Diazomethane (November 29, 2018) Center for Disease Control and Prevention. http://www.cdc.gov/niosh/npg/npgd0182.html [accessed March 21, 2019).
- 6T. Bug, M. Hartnagel, C. Schlierf, H. Mayr, Chem. Eur. J. 2003, 9, 4068–4076.
- 7J. Podlech, J. Prakt. Chem. 1998, 340, 679–682.
- 8N. G. Murphy, S. M. Varney, J. M. Tallon, J. R. Thompson, P. D. Blanc, Clin. Toxicol. 2009, 47, 712.
- 9G. Maas, Angew. Chem. Int. Ed. 2009, 48, 8186–8195; Angew. Chem. 2009, 121, 8332–8341.
- 10A. F. McKay, J. Am. Chem. Soc. 1948, 70, 1974–1975.
- 11V. K. Aggarwal, E. Alonso, G. Hynd, K. M. Lydon, M. J. Palmer, M. Porcelloni, J. R. Studley, Angew. Chem. Int. Ed. 2001, 40, 1430–1433;
10.1002/1521-3773(20010417)40:8<1430::AID-ANIE1430>3.0.CO;2-W CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 1479–1482.
- 12T. Toma, J. Shimokawa, T. Fukuyama, Org. Lett. 2007, 9, 3195–3197.
- 13B. Morandi, E. M. Carreira, Angew. Chem. Int. Ed. 2010, 49, 938–941; Angew. Chem. 2010, 122, 950–953.
- 14M. Struempel, B. Ondruschka, R. Daute, A. Stark, Green Chem. 2008, 10, 41–43.
- 15E. Rossi, P. Woehl, M. Maggini, Org. Process Res. Dev. 2012, 16, 1146–1149.
- 16R. A. Maurya, C. P. Park, J. H. Lee, D. P. Kim, Angew. Chem. Int. Ed. 2011, 50, 5952–5955; Angew. Chem. 2011, 123, 6074–6077.
- 17F. Mastronardi, B. Gutmann, C. O. Kappe, Org. Lett. 2013, 15, 5590–5593.
- 18D. Dallinger, C. O. Kappe, Nat. Protoc. 2017, 12, 2138–2147.
- 19H. Lehmann, Green Chem. 2017, 19, 1449–1453.
- 20E. Carlson, G. Duret, N. Blanchard, W. Tam, Synth. Commun. 2016, 46, 55–62.
- 21L. S. Barkawi, J. D. Cohen, Nat. Protoc. 2010, 5, 1619–1626.
- 22E. Carlson, W. Tam, Synthesis 2016, 48, 2449–2454.
- 23B. Morandi, E. M. Carreira, Science 2012, 335, 1471–1474.
- 24M. F. Stevens, J. A. Hickman, R. Stone, N. W. Gibson, G. U. Baig, E. Lunt, C. G. Newton, J. Med. Chem. 1984, 27, 196–201.
- 25W. P. Mason, R. O. Mirimanoff, R. Stupp, Prog. Neurother. Neuropsychopharmacol. 2006, 1, 37–52.
10.1017/S1748232105000054 Google Scholar
- 26G. Reifenberger, H. Wirsching, C. B. Knobbe-Thomsen, M. Weller, Nat. Rev. Clin. Oncol. 2017, 14, 434–452.
- 27B. J. Denny, R. T. Wheelhouse, M. F. Stevens, L. L. Tsang, J. A. Slack, Biochemistry 1994, 33, 9045–9051.
- 28A. Saleem, G. D. Brown, F. Brady, E. O. Aboagye, S. Osman, S. K. Luthra, A. S. O. Ranicar, C. S. Brock, M. F. G. Stevens, E. Newlands, T. Jones, P. Price, Cancer Res. 2003, 63, 2409–2415.
- 29R. L. Svec, L. Furiassi, C. G. Skibinski, T. M. Fan, G. J. Riggins, P. J. Hergenrother, ACS Chem. Biol. 2018, 13, 3206–3216.
- 30E. S. Newlands, G. R. Blackledge, J. A. Slack, G. J. Rustin, D. B. Smith, N. S. Stuart, C. P. Quarterman, R. Hoffman, M. F. Stevens, M. H. Brampton, Br. J. Cancer 1992, 65, 287–291.
- 31S. D. Baker, M. Wirth, P. Statkevich, P. Reidenberg, K. Alton, S. E. Sartorius, M. Dugan, D. Cutler, V. Batra, L. B. Grochow, R. C. Donehower, E. K. Rowinsky, Clin. Cancer Res. 1999, 5, 309–317.
- 32R. W. Huigens III, K. C. Morrison, R. W. Hicklin, T. A. Flood, M. F. Richter, P. J. Hergenrother, Nat. Chem. 2013, 5, 195–202.
- 33Y. Wang, R. T. Wheelhouse, L. Zhao, D. A. F. Langnel, M. F. G. Stevens, J. Chem. Soc. Perkin Trans. 1 1998, 1669–1675.
- 34M. F. G. Stevens, D. Cousin, S. Jennings, A. J. McCarroll, J. G. Williams, M. G. Hummersone, J. Zhang, Int. Pat. WO2009077741 [A2], 2009.
- 35M. Espinoza-Moraga, K. Singh, M. Njoroge, G. Kaur, J. Okombo, C. De Kock, P. J. Smith, S. Wittlin, K. Chibale, Bioorg. Med. Chem. Lett. 2017, 27, 658–661.
- 36S. Z. Tasker, A. E. Cowfer, P. J. Hergenrother, Org. Lett. 2018, 20, 5894–5898.
- 37“Conversion of Carboxylic Acids into Esters without Use of Alcohols”: J. Otero, J. Nishikido in Esterification: Methods, Reactions, and Applications, Wiley, Hoboken, 2010, pp. 173–192.
- 38L. D. Proctor, A. J. Warr, Org. Process Res. Dev. 2002, 6, 884–892.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.