From Concept to Crystals via Prediction: Multi-Component Organic Cage Pots by Social Self-Sorting
Dr. Rebecca L. Greenaway
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorDr. Valentina Santolini
Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ UK
Search for more papers by this authorDr. Angeles Pulido
School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ UK
Current address: The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ UK
Search for more papers by this authorDr. Marc A. Little
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorDr. Ben M. Alston
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorDr. Michael E. Briggs
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorCorresponding Author
Prof. Graeme M. Day
School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ UK
Search for more papers by this authorCorresponding Author
Prof. Andrew I. Cooper
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorCorresponding Author
Dr. Kim E. Jelfs
Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ UK
Search for more papers by this authorDr. Rebecca L. Greenaway
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorDr. Valentina Santolini
Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ UK
Search for more papers by this authorDr. Angeles Pulido
School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ UK
Current address: The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ UK
Search for more papers by this authorDr. Marc A. Little
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorDr. Ben M. Alston
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorDr. Michael E. Briggs
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorCorresponding Author
Prof. Graeme M. Day
School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ UK
Search for more papers by this authorCorresponding Author
Prof. Andrew I. Cooper
Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY UK
Search for more papers by this authorCorresponding Author
Dr. Kim E. Jelfs
Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ UK
Search for more papers by this authorAbstract
We describe the a priori computational prediction and realization of multi-component cage pots, starting with molecular predictions based on candidate precursors through to crystal structure prediction and synthesis using robotic screening. The molecules were formed by the social self-sorting of a tri-topic aldehyde with both a tri-topic amine and di-topic amine, without using orthogonal reactivity or precursors of the same topicity. Crystal structure prediction suggested a rich polymorphic landscape, where there was an overall preference for chiral recognition to form heterochiral rather than homochiral packings, with heterochiral pairs being more likely to pack window-to-window to form two-component capsules. These crystal packing preferences were then observed in experimental crystal structures.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201909237-sup-0001-misc_information.pdf8.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Zhang, M. Mastalerz, Chem. Soc. Rev. 2014, 43, 1934–1947.
- 2J. D. Evans, C. J. Sumby, C. J. Doonan, Chem. Lett. 2015, 44, 582–588.
- 3T. Hasell, A. I. Cooper, Nat. Rev. Mater. 2016, 1, 16053.
- 4F. Beuerle, B. Gole, Angew. Chem. Int. Ed. 2018, 57, 4850–4878; Angew. Chem. 2018, 130, 4942–4972.
- 5M. A. Little, M. E. Briggs, J. T. A. Jones, M. Schmidtmann, T. Hasell, S. Y. Chong, K. E. Jelfs, L. Chen, A. I. Cooper, Nat. Chem. 2015, 7, 153–159.
- 6J. T. A. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, et al., Nature 2011, 474, 367–371.
- 7T. Hasell, J. L. Culshaw, S. Y. Chong, M. Schmidtmann, M. A. Little, K. E. Jelfs, E. O. Pyzer-Knapp, H. Shepherd, D. J. Adams, G. M. Day, et al., J. Am. Chem. Soc. 2014, 136, 1438–1448.
- 8T. Mitra, K. E. Jelfs, M. Schmidtmann, A. Ahmed, S. Y. Chong, D. J. Adams, A. I. Cooper, Nat. Chem. 2013, 5, 276–281.
- 9L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, et al., Nat. Mater. 2014, 13, 954–960.
- 10K. Acharyya, S. Mukherjee, P. S. Mukherjee, J. Am. Chem. Soc. 2013, 135, 554–557.
- 11X. Wang, P. Peng, W. Xuan, Y. Wang, Y. Zhuang, Z. Tian, X. Cao, Org. Biomol. Chem. 2018, 16, 34–37.
- 12M. Kołodziejski, A. R. Stefankiewicz, J.-M. Lehn, Chem. Sci. 2019, https://doi.org/10.1039/C8SC04598D.
- 13S. Klotzbach, F. Beuerle, Angew. Chem. Int. Ed. 2015, 54, 10356–10360; Angew. Chem. 2015, 127, 10497–10502.
- 14D. Beaudoin, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2017, 56, 1244–1248; Angew. Chem. 2017, 129, 1264–1268.
- 15S. Jiang, J. T. A. Jones, T. Hasell, C. E. Blythe, D. J. Adams, A. Trewin, A. I. Cooper, Nat. Commun. 2011, 2, 207.
- 16Q. Wang, C. Zhang, B. C. Noll, H. Long, Y. Jin, W. Zhang, Angew. Chem. Int. Ed. 2014, 53, 10663–10667; Angew. Chem. 2014, 126, 10839–10843.
- 17S. Lee, A. Yang, T. P. Moneypenny, J. S. Moore, J. Am. Chem. Soc. 2016, 138, 2182–2185.
- 18J. C. Lauer, W. S. Zhang, F. Rominger, R. R. Schröder, M. Mastalerz, Chem. Eur. J. 2018, 24, 1816–1820.
- 19K. Ono, N. Iwasawa, Chem. Eur. J. 2018, 24, 17856–17868.
- 20D. Tan, T. Friščić, Eur. J. Org. Chem. 2018, 18–33.
- 21V. Santolini, M. Miklitz, E. Berardo, K. E. Jelfs, Nanoscale 2017, 9, 5280–5298.
- 22G. Zhu, Y. Liu, L. Flores, Z. R. Lee, C. W. Jones, D. A. Dixon, D. S. Sholl, R. P. Lively, Chem. Mater. 2018, 30, 262–272.
- 23R. L. Greenaway, V. Santolini, M. J. Bennison, B. M. Alston, C. Stackhouse, M. A. Little, M. Miklitz, E. G. B. Eden, R. Clowes, A. Shakil, et al., Nat. Commun. 2018, 9, 2849.
- 24E. O. Pyzer-Knapp, H. P. G. Thompson, F. Schiffmann, K. E. Jelfs, S. Y. Chong, M. A. Little, A. I. Cooper, G. M. Day, Chem. Sci. 2014, 5, 2235–2245.
- 25M. Bernabei, R. Pérez-Soto, I. Gómez García, M. Haranczyk, Mol. Syst. Des. Eng. 2018, 3, 942–950.
- 26M. Bernabei, R. Pérez Soto, I. Gómez García, M. Haranczyk, Mol. Syst. Des. Eng. 2019, https://doi.org/10.1039/c9me00018f.
- 27T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, et al., Nat. Mater. 2009, 8, 973–978.
- 28A. G. Slater, M. A. Little, A. Pulido, S. Y. Chong, D. Holden, L. Chen, C. Morgan, X. Wu, G. Cheng, R. Clowes, et al., Nat. Chem. 2017, 9, 17.
- 29M. E. Briggs, K. E. Jelfs, S. Y. Chong, C. Lester, M. Schmidtmann, D. J. Adams, A. I. Cooper, Cryst. Growth Des. 2013, 13, 4993–5000.
- 30T. Hasell, S. Y. Chong, K. E. Jelfs, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 588–598.
- 31See Ref. [27].
- 32A. G. Slater, M. A. Little, A. Pulido, S. Y. Chong, D. Holden, L. Chen, C. Morgan, X. Wu, G. Cheng, R. Clowes, et al., Nat. Chem. 2017, 9, 17–25.
- 33A. G. Slater, P. S. Reiss, A. Pulido, M. A. Little, D. L. Holden, L. Chen, S. Y. Chong, B. M. Alston, R. Clowes, M. Haranczyk, et al., ACS Cent. Sci. 2017, 3, 734–742.
- 34E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, et al., J. Chem. Theory Comput. 2016, 12, 281–296.
- 35X. Liu, R. Warmuth, J. Am. Chem. Soc. 2006, 128, 14120–14127.
- 36T. P. Moneypenny, A. Yang, N. P. Walter, T. J. Woods, D. L. Gray, Y. Zhang, J. S. Moore, J. Am. Chem. Soc. 2018, 140, 5825–5833.
- 37A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little, S. Y. Chong, B. J. Slater, D. P. McMahon, B. Bonillo, C. J. Stackhouse, et al., Nature 2017, 543, 657–664.
- 38J. Nyman, G. M. Day, CrystEngComm 2015, 17, 5154–5165.
- 39D. P. McMahon, A. Stephenson, S. Y. Chong, M. A. Little, J. T. A. Jones, A. I. Cooper, G. M. Day, Faraday Discuss. 2018, 211, 383–399.
- 40D. Zhang, A. Martinez, J. P. Dutasta, Chem. Rev. 2017, 117, 4900–4942.
- 41C. M. Kane, O. Ugono, L. J. Barbour, K. T. Holman, Chem. Mater. 2015, 27, 7337–7354.
- 42C. M. Kane, A. Banisafar, T. P. Dougherty, L. J. Barbour, K. T. Holman, J. Am. Chem. Soc. 2016, 138, 4377–4392.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.