Stimuli-Responsive Reversible Switching of Intersystem Crossing in Pure Organic Material for Smart Photodynamic Therapy
Dr. Wenbo Hu
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Institute for Lasers, Photonics, and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260 USA
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorDr. Tingchao He
College of Physics Science & Technology, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorDr. Hui Zhao
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorHaojie Tao
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorProf. Runfeng Chen
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorLu Jin
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorJunzi Li
College of Physics Science & Technology, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorCorresponding Author
Prof. Quli Fan
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 China
Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorDr. Alexander Baev
Institute for Lasers, Photonics, and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260 USA
Search for more papers by this authorCorresponding Author
Prof. Paras N. Prasad
Institute for Lasers, Photonics, and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260 USA
Search for more papers by this authorDr. Wenbo Hu
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Institute for Lasers, Photonics, and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260 USA
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 China
Search for more papers by this authorDr. Tingchao He
College of Physics Science & Technology, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorDr. Hui Zhao
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorHaojie Tao
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorProf. Runfeng Chen
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorLu Jin
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorJunzi Li
College of Physics Science & Technology, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorCorresponding Author
Prof. Quli Fan
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816 China
Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorDr. Alexander Baev
Institute for Lasers, Photonics, and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260 USA
Search for more papers by this authorCorresponding Author
Prof. Paras N. Prasad
Institute for Lasers, Photonics, and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260 USA
Search for more papers by this authorAbstract
Photosensitizers (PSs) with stimuli-responsive reversible switching of intersystem crossing (ISC) are highly promising for smart photodynamic therapy (PDT), but achieving this goal remains a tremendous challenge. This study introduces a strategy to obtain such reversible switching of ISC in a new class of PSs, which exhibit stimuli-initiated twisting of conjugated backbone. We present a multidisciplinary approach that includes femtosecond transient absorption spectroscopy and quantum chemical calculations. The organic structures reported show remarkably enhanced ISC efficiency (ΦISC), switching from nearly 0 to 90 %, through an increase in the degree of twisting, providing an innovative mechanism to promote ISC. This leads us to propose here and demonstrate the concept of smart PDT, where pH-induced reversible twisting maximizes the ISC rate, and thus enables strong photodynamic action only under pathological stimulus (such as change in pH, hypoxia, or exposure to enzymes). The ISC process is turned off to deactivate PDT ability, when the PS is transferred or metabolized away from pathological region.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201905129-sup-0001-misc_information.pdf2.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380–387;
- 1bT. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst. 1998, 90, 889–905;
- 1cH. Wang, S. Jiang, S. Chen, D. Li, X. Zhang, W. Shao, X. Sun, J. Xie, Z. Zhao, Q. Zhang, Y. Tian, Y. Xie, Adv. Mater. 2016, 28, 6940–6945;
- 1dL. Bañares, Nat. Chem. 2019, 11, 103–104;
- 1eD.-H. Kim, A. D'Aléo, X.-K. Chen, A. D. S. Sandanayaka, D. Yao, L. Zhao, T. Komino, E. Zaborova, G. Canard, Y. Tsuchiya, E. Choi, J. W. Wu, F. Fages, J.-L. Brédas, J.-C. Ribierre, C. Adachi, Nat. Photonics 2018, 12, 98–104;
- 1fL. Bergmann, G. J. Hedley, T. Baumann, S. Brase, I. D. Samuel, Sci. Adv. 2016, 2, e 1500889;
- 1gS. M. A. Fateminia, Z. Mao, Z. Yang, S. Xu, Z. Chi, B. Liu, Angew. Chem. Int. Ed. 2017, 56, 12160–12164; Angew. Chem. 2017, 129, 12328–12332;
- 1hX. Zhen, Y. Tao, Z. F. An, P. Chen, C. J. Xu, R. F. Chen, W. Huang, K. Y. Pu, Adv. Mater. 2017, 29, 1606665.
- 2
- 2aH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234–238;
- 2bJ. F. Lovell, T. W. Liu, J. Chen, G. Zheng, Chem. Rev. 2010, 110, 2839–2857.
- 3Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai, B. Z. Tang, Nat. Commun. 2017, 8, 416.
- 4Z. Yu, Y. Wu, L. Xiao, J. Chen, Q. Liao, J. Yao, H. Fu, J. Am. Chem. Soc. 2017, 139, 6376–6381.
- 5O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205–210.
- 6J. Z. Zhao, W. H. Wu, J. F. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323–5351.
- 7
- 7aW. Hu, T. He, R. Jiang, J. Yin, L. Li, X. Lu, H. Zhao, L. Zhang, L. Huang, H. Sun, W. Huang, Q. L. Fan, Chem. Commun. 2017, 53, 1680–1683;
- 7bW. Hu, M. Xie, H. Zhao, Y. Tang, S. Yao, T. He, C. Ye, Q. Wang, X. Lu, W. Huang, Q. Fan, Chem. Sci. 2018, 9, 999–1005.
- 8
- 8aY. Han, L. H. Spangler, J. Phys. Chem. A 2002, 106, 1701–1707;
- 8bL. Ma, K. Zhang, C. Kloc, H. Sun, M. E. Michel-Beyerle, G. G. Gurzadyan, Phys. Chem. Chem. Phys. 2012, 14, 8307–8312.
- 9
- 9aM. Pollum, S. Jockusch, C. E. Crespo-Hernandez, J. Am. Chem. Soc. 2014, 136, 17930–17933;
- 9bK. Nagarajan, A. R. Mallia, K. Muraleedharan, M. Hariharan, Chem. Sci. 2017, 8, 1776–1782.
- 10Y. Wu, Y. Zhen, Y. Ma, R. Zheng, Z. Wang, H. Fu, J. Phys. Chem. Lett. 2010, 1, 2499–2502.
- 11G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747–751.
- 12
- 12aD. Beljonne, Z. Shuai, G. Pourtois, J. L. Bredas, J. Phys. Chem. A 2001, 105, 3899–3907;
- 12bX. F. Chen, C. Xu, T. Wang, C. Zhou, J. J. Du, Z. P. Wang, H. X. Xu, T. Q. Xie, G. Q. Bi, J. Jiang, X. P. Zhang, J. N. Demas, C. O. Trindle, Y. Luo, G. Q. Zhang, Angew. Chem. Int. Ed. 2016, 55, 9872–9876; Angew. Chem. 2016, 128, 10026–10030.
- 13Y. Tao, R. Chen, H. Li, J. Yuan, Y. Wan, H. Jiang, C. Chen, Y. Si, C. Zheng, B. Yang, G. Xing, W. Huang, Adv. Mater. 2018, 30, 1803856.
- 14M. A. El-Sayed, J. Chem. Phys. 1963, 38, 2834–2838.
- 15C. M. Marian, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 187–203.
- 16
- 16aB. Shi, K. Jie, Y. Zhou, J. Zhou, D. Xia, F. Huang, J. Am. Chem. Soc. 2016, 138, 80–83;
- 16bG. Yu, K. Jie, F. Huang, Chem. Rev. 2015, 115, 7240–7303;
- 16cG. Yu, D. Wu, Y. Li, Z. Zhang, L. Shao, J. Zhou, Q. Hu, G. Tang, F. Huang, Chem. Sci. 2016, 7, 3017–3024.
- 17C. Wang, Y. Wang, Y. Li, B. Bodemann, T. Zhao, X. Ma, G. Huang, Z. Hu, R. J. DeBerardinis, M. A. White, J. Gao, Nat. Commun. 2015, 6, 8524.
- 18A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, P. N. Prasad, Nat. Photonics 2014, 8, 455–461.
- 19G. Chen, I. Roy, C. Yang, P. N. Prasad, Chem. Rev. 2016, 116, 2826–2885.
- 20S. P. McGlynn, T. Azumi, M. Kasha, J. Chem. Phys. 1964, 40, 507–515.
- 21
- 21aS. H. Lim, C. Thivierge, P. Nowak-Sliwinska, J. Han, H. van den Bergh, G. Wagnières, K. Burgess, H. B. Lee, J. Med. Chem. 2010, 53, 2865–2874;
- 21bY. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc, E. U. Akkaya, Angew. Chem. Int. Ed. 2011, 50, 11937–11941; Angew. Chem. 2011, 123, 12143–12147.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.