M−C Bond Homolysis in Coinage-Metal [M(CF3)4]− Derivatives
Correction(s) for this article
-
Berichtigung: M−C Bond Homolysis in Coinage-Metal [M(CF3)4]− Derivatives
- Volume 132Issue 7Angewandte Chemie
- pages: 2563-2563
- First Published online: February 3, 2020
Dr. Miguel Baya
Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorM. Sc. Daniel Joven-Sancho
Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorProf. Dr. Pablo J. Alonso
Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorDr. Jesús Orduna
Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorCorresponding Author
Dr. Babil Menjón
Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorDr. Miguel Baya
Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorM. Sc. Daniel Joven-Sancho
Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorProf. Dr. Pablo J. Alonso
Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorDr. Jesús Orduna
Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorCorresponding Author
Dr. Babil Menjón
Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
Search for more papers by this authorDedicated to Professor Pablo Espinet on the occasion of his 70th birthday
Abstract
A comparative study of the homoleptic [M(CF3)4]− complexes of all three coinage metals (M=Cu, Ag, Au) reveals that homolytic M−C bond cleavage is favoured in every case upon excitation in the gas phase (CID-MS2). Homolysis also occurs in solution by photochemical excitation. Transfer of the photogenerated CF3. radicals to both aryl and alkyl carbon atoms was also confirmed. The observed behaviour was rationalized by considering the electronic structure of the involved species, which all show ligand-field inversion. Moreover, the homolytic pathway constitutes experimental evidence for the marked covalent character of the M−C bond. The relative stability of these M−C bonds was evaluated by energy-resolved mass spectrometry (ERMS) and follows the order Cu<Ag≪Au. The qualitatively similar and rather uniform behaviour experimentally observed for all three coinage metals gives no ground to suggest variation in the metal oxidation state along the group.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201903496-sup-0001-DFT_structures.xyz16.4 KB | Supplementary |
ange201903496-sup-0001-misc_information.pdf6.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. K. Ritter, Chem. Eng. News 2012, 90 (9), 10.
- 2T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470.
- 3
- 3aJ. Gil-Rubio, J. Vicente, Dalton Trans. 2015, 44, 19432;
- 3bM. A. García-Monforte, S. Martínez-Salvador, B. Menjón, Eur. J. Inorg. Chem. 2012, 4945.
- 4Ligand-field inversion arises when the metal d orbitals are substantially stabilized with respect to those contributed by the ligands, and involves inversion of the standard ligand-field splitting for any given geometry; see: R. Hoffmann, S. Alvarez, C. Mealli, A. Falceto, T. J. Cahill III, T. Zeng, G. Manca, Chem. Rev. 2016, 116, 8173.
- 5
- 5aA. M. Romine, N. Nebra, A. I. Konovalov, E. Martin, J. Benet-Buchholz, V. V. Grushin, Angew. Chem. Int. Ed. 2015, 54, 2745; Angew. Chem. 2015, 127, 2783;
- 5bD. Naumann, T. Roy, K.-F. Tebbe, W. Crump, Angew. Chem. Int. Ed. Engl. 1993, 32, 1482; Angew. Chem. 1993, 105, 1555.
- 6
- 6aD. Joven-Sancho, M. Baya, A. Martín, B. Menjón, Chem. Eur. J. 2018, 24, 13098;
- 6bW. Dukat, D. Naumann, Rev. Chim. Miner. 1986, 23, 589.
- 7
- 7aS. Martínez-Salvador, L. R. Falvello, A. Martín, B. Menjón, Chem. Eur. J. 2013, 19, 14540;
- 7bJ. A. Schlueter, J. M. Williams, U. Geiser, J. D. Dudek, S. A. Sirchio, M. E. Kelly, J. S. Gregar, W. H. Kwok, J. A. Fendrich, J. E. Schirber, W. R. Bayless, D. Naumann, T. Roy, J. Chem. Soc. Chem. Commun. 1995, 1311.
- 8U. Preiss, I. Krossing, Z. Anorg. Allg. Chem. 2007, 633, 1639.
- 9
- 9aJ. A. Schlueter, Top. Organomet. Chem. 2009, 27, 1;
- 9bU. Geiser, J. A. Schlueter, Chem. Rev. 2004, 104, 5203.
- 10J. P. Snyder, Angew. Chem. Int. Ed. Engl. 1995, 34, 80; Angew. Chem. 1995, 107, 112.
- 11
- 11aJ. P. Snyder, Angew. Chem. Int. Ed. Engl. 1995, 34, 986; Angew. Chem. 1995, 107, 1076;
- 11bM. Kaupp, H. G. von Schnering, Angew. Chem. Int. Ed. Engl. 1995, 34, 986; Angew. Chem. 1995, 107, 1076.
- 12C. Gao, G. Macetti, J. Overgaard, Inorg. Chem. 2019, 58, 2133.
- 13R. C. Walroth, J. T. Lukens, S. N. MacMillan, K. D. Finkelstein, K. M. Lancaster, J. Am. Chem. Soc. 2016, 138, 1922.
- 14C. M. Lemon, M. Huynh, A. G. Maher, B. L. Anderson, E. D. Bloch, D. C. Powers, D. G. Nocera, Angew. Chem. Int. Ed. 2016, 55, 2176; Angew. Chem. 2016, 128, 2216.
- 15
- 15aP. Karen, P. McArdle, J. Takats, Pure Appl. Chem. 2016, 88, 831;
- 15bP. Karen, Angew. Chem. Int. Ed. 2015, 54, 4716; Angew. Chem. 2015, 127, 4798;
- 15cP. Karen, P. McArdle, J. Takats, Pure Appl. Chem. 2014, 86, 1017.
- 16The fundamental difference between atomic charge and oxidation state has already been clearly outlined and conveniently discussed; see: G. Aullón, S. Alvarez, Theor. Chem. Acc. 2009, 123, 67; see also Ref. [11b].
- 17R. A. J. O'Hair, Chem. Commun. 2006, 1469.
- 18A. Pérez-Bitrián, S. Martínez-Salvador, M. Baya, J. M. Casas, A. Martín, B. Menjón, J. Orduna, Chem. Eur. J. 2017, 23, 6919.
- 19S. Weske, R. A. Hardin, T. Auth, R. A. J. O'Hair, K. Koszinowski, C. A. Ogle, Chem. Commun. 2018, 54, 5086.
- 20Complexes [CF3AuX3]− (X=Cl, Br) have also been found to undergo CF3. dissociation in the gas phase, giving rise to [AuX3]−; see: M. Baya, A. Pérez-Bitrián, S. Martínez-Salvador, A. Martín, J. M. Casas, B. Menjón, J. Orduna, Chem. Eur. J. 2018, 24, 1514.
- 21The ERMS technique enables one to evaluate the strength of individual bonds within chemical compounds of certain complexity; see:
- 21aE. Altuntaş, A. Winter, A. Baumgaertel, R. M. Paulus, C. Ulbricht, A. C. Crecelius, N. Risch, U. S. Schubert, J. Mass Spectrom. 2012, 47, 34;
- 21bE. Altuntaş, A. Winter, A. Crecelius, U. S. Schubert, Bruker App Note ET-34, 2012.
- 22In an ion-trap mass spectrometer, the mass-selected [M(CF3)4]− anions were subjected to CID conditions under variable collision energies, which were gradually increased up to the point where the parent complex was totally dissociated (see the Experimental Section).
- 23The energy required to promote CF2 extrusion from the monovalent linear [CF3MCF3]− complexes (3 a–3 c) was also evaluated (Figure S18). In this case, the values obtained follow the order CuI<AgI≈AuI.
- 24P. Schwerdtfeger, M. Lein in Gold Chemistry: Applications and Future Directions in the Life Sciences (Ed.: ), Wiley-VCH, Weinheim, 2009, Chapter 4, pp. 183–247.
10.1002/9783527626724.ch4 Google Scholar
- 25
- 25aW. R. Dolbier, Jr., Top. Curr. Chem. 1997, 192, 97;
- 25bW. R. Dolbier, Jr., Chem. Rev. 1996, 96, 1557.
- 26E. G. Janzen, Acc. Chem. Res. 1971, 4, 31.
- 27E. G. Janzen, B. J. Blackburn, J. Am. Chem. Soc. 1968, 90, 5909.
- 28The heavier-metal systems 1 b and 1 c show very clean and simple responses to irradiation. In the copper system 1 a, however, an additional radical signal of minor intensity was always observed, which has been analysed (Figure S16), but not yet identified.
- 29Better results were obtained with the lighter metal agents 1 a and 1 b (Table 1). Transfer with the gold complex 1 c is less efficient, probably because of its higher stability.
- 30
- 30aE. Torti, S. Protti, M. Fagnoni, Chem. Commun. 2018, 54, 4144;
- 30bJ. Lin, Z. Li, J. Kan, S. Huang, W. Su, Y. Li, Nat. Commun. 2017, 8, 14353;
- 30cT. Koike, M. Akita, Acc. Chem. Res. 2016, 49, 1937;
- 30dJ. W. Beatty, J. J. Douglas, K. P. Cole, C. R. J. Stephenson, Nat. Commun. 2015, 6, 7919;
- 30eA. Studer, Angew. Chem. Int. Ed. 2012, 51, 8950; Angew. Chem. 2012, 124, 9082;
- 30fA. T. Parsons, S. L. Buchwald, Nature 2011, 480, 184.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.