Strigolactone: Pflanzenhormone mit vielversprechenden Eigenschaften
Corresponding Author
Prof. Harro J. Bouwmeester
Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Niederlande
Search for more papers by this authorDr. Raymonde Fonne-Pfister
Syngenta Crop Protection Research, Stein, CH-4334 Schweiz
Search for more papers by this authorDr. Claudio Screpanti
Syngenta Crop Protection Research, Stein, CH-4334 Schweiz
Search for more papers by this authorCorresponding Author
Dr. Alain De Mesmaeker
Syngenta Crop Protection Research, Stein, CH-4334 Schweiz
Search for more papers by this authorCorresponding Author
Prof. Harro J. Bouwmeester
Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Niederlande
Search for more papers by this authorDr. Raymonde Fonne-Pfister
Syngenta Crop Protection Research, Stein, CH-4334 Schweiz
Search for more papers by this authorDr. Claudio Screpanti
Syngenta Crop Protection Research, Stein, CH-4334 Schweiz
Search for more papers by this authorCorresponding Author
Dr. Alain De Mesmaeker
Syngenta Crop Protection Research, Stein, CH-4334 Schweiz
Search for more papers by this authorAbstract
Vor einigen Jahren, und damit fast 80 Jahre nach der Entdeckung des ersten Pflanzenhormons Auxin, wurde eine neue Klasse von Pflanzenhormonen – die Strigolactone – entdeckt. Diese Moleküle zeigen eine einzigartige biologische Aktivität in zahlreichen wichtigen biologischen Prozessen der Pflanzen, aber auch außerhalb von Pflanzen, nämlich in der Rhizosphäre, einer Erdschicht, die die Wurzeln umgibt und von Lebewesen wimmelt. Die Nutzung dieser erstaunlichen biologischen Aktivität ist nicht ohne Herausforderungen: Die Biosynthese von Strigolactonen ist kompliziert, und es ist schwierig, die erwünschte Aktivität zu konzipieren. Dieser Kurzaufsatz beschreibt den heutigen Stand der Wissenschaft im Bereich der Strigolactone und diskutiert, wie funktionelle Analoga entwickelt werden können, die möglicherweise zu einer nachhaltigen Landwirtschaft beitragen.
Conflict of interest
Die Autoren erklären, dass keine Interessenkonflikte vorliegen.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201901626-sup-0001-misc_information.pdf10.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. A. F. C. Went, Nature 1933, 132, 452.
10.1038/132452a0 Google Scholar
- 2V. Gomez-Roldan, S. Fermas, P. B. Brewer, V. Puech-Pagès, E. A. Dun, J.-P. Pillot, F. Letisse, R. Matusova, S. Danoun, J.-C. Portais, H. Bouwmeester, G. Bécard, C. A. Beveridge, C. Rameau, S. F. Rochange, Nature 2008, 455, 189.
- 3M. Umehara, A. Hanada, S. Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H. Magome, Y. Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka, S. Yamaguchi, Nature 2008, 455, 195–200.
- 4K. Sorefan, J. Booker, K. Haurogne, M. Goussot, K. Bainbridge, E. Foo, S. Chatfield, S. Ward, C. Beveridge, C. Rameau, O. Leyser, Genes Dev. 2003, 17, 1469–1474.
- 5C. E. Cook, L. P. Whichard, B. Turner, M. E. Wall, G. H. Egley, Science 1966, 154, 1189–1190.
- 6C. Parker, Weed Sci. 2012, 60, 269–276.
- 7H. J. Bouwmeester, R. Matusova, S. Zhongkui, M. H. Beale, Curr. Opin. Plant Biol. 2003, 6, 358–364.
- 8E. Villedieu-Percheron, M. Lachia, P. M. J. Jung, C. Screpanti, R. Fonné-Pfister, S. Wendeborn, D. Zurwerra, A. De Mesmaeker, Chimia 2014, 68, 654–663.
- 9L. G. Butler, in Insights into Allelopathy, ACS Symposium Series (Hrsg.: ), ACS Books, Washington, 1995, S. 158–168.
- 10Y. Wang, H. J. Bouwmeester, J. Exp. Bot. 2018, 69, 2219–2230.
- 11K. Yoneyama, X. Xie, K. Yoneyama, T. Kisugi, T. Nomura, Y. Nakatani, K. Akiyama, C. S. P. McErlean, J. Exp. Bot. 2018, 69, 2231–2239.
- 12K. Akiyama, K. Matsuzaki, H. Hayashi, Nature 2005, 435, 824–827.
- 13M. J. Harrison, Annu. Rev. Microbiol. 2005, 59, 19–42.
- 14S. Al-Babili, H. J. Bouwmeester, Annu. Rev. Plant Biol. 2015, 66, 161–186.
- 15M. T. Waters, C. Gutjahr, T. Bennett, D. C. Nelson, Annu. Rev. Plant Biol. 2017, 68, 291–322.
- 16C. V. Ha, M. A. Leyva-Gonzalez, Y. Osakabe, U. T. Tran, R. Nishiyama, Y. Watanabe, M. Tanaka, M. Seki, S. Yamaguchi, N. V. Dong, K. Yamaguchi-Shinozaki, K. Shinozaki, L. Herrera-Estrella, L. S. P. Tran, Proc. Natl. Acad. Sci. USA 2014, 111, 851–856.
- 17W. Kohlen, T. Charnikhova, Q. Liu, R. Bours, M. A. Domagalska, S. Beguerie, F. Verstappen, O. Leyser, H. Bouwmeester, C. Ruyter-Spira, Plant Physiol. 2011, 155, 974–987.
- 18C. Ruyter-Spira, W. Kohlen, T. Charnikhova, A. van Zeijl, L. van Bezouwen, N. de Ruijter, C. Cardoso, J. A. Lopez-Raez, R. Matusova, R. Bours, F. Verstappen, H. Bouwmeester, Plant Physiol. 2011, 155, 721–734.
- 19C. Screpanti, R. Fonné-Pfister, A. Lumbroso, S. Rendine, M. Lachia, A. De Mesmaeker, Bioorg. Med. Chem. Lett. 2016, 26, 2392–2400.
- 20M. G. Mostofa, W. Li, K. H. Nguyen, M. Fujita, L.-S. P. Tran, Plant Cell Environ. 2018, 41, 2227–2243.
- 21J. A. López-Ráez, K. Shirasu, E. Foo, Trends Plant Sci. 2017, 22, 527–537.
- 22T. R. Schlemper, M. F. A. Leite, A. R. Lucheta, M. Shimels, H. J. Bouwmeester, J. A. van Veen, E. E. Kuramae, FEMS Microbiol. Ecol. 2017, 93, fix 096.
- 23R. Torres-Vera, J. M. García, M. J. Pozo, J. A. López-Ráez, Mol. Plant Pathol. 2014, 15, 211–216.
- 24A. Alder, M. Jamil, M. Marzorati, M. Bruno, M. Vermathen, P. Bigler, S. Ghisla, H. J. Bouwmeester, P. Beyer, S. Al-Babili, Science 2012, 335, 1348–1351.
- 25Y. Zhang, A. D. J. Van Dijk, A. Scaffidi, G. R. Flematti, M. Hofmann, T. Charnikhova, F. Verstappen, J. Hepworth, S. Van der Krol, H. M. O. Leyser, S. M. Smith, B. Zwanenburg, S. Al-Babili, C. Ruyter-Spira, H. J. Bouwmeester, Nat. Chem. Biol. 2014, 10, 1028–1033.
- 26S. Abe, A. Sado, K. Tanaka, T. Kisugi, K. Asami, S. Ota, H. Il Kim, K. Yoneyama, X. Xie, T. Ohnishi, Y. Seto, S. Yamaguchi, K. Akiyama, K. Yoneyama, T. Nomura, Proc. Natl. Acad. Sci. USA 2014, 111, 18084–18089.
- 27P. B. Brewer, K. Yoneyama, F. Filardo, E. Meyers, A. Scaffidi, T. Frickey, K. Akiyama, Y. Seto, E. A. Dun, J. E. Cremer, S. C. Kerr, M. T. Waters, G. R. Flematti, M. G. Mason, G. Weiller, S. Yamaguchi, T. Nomura, S. M. Smith, K. Yoneyama, C. A. Beveridge, Proc. Natl. Acad. Sci. USA 2016, 113, 6301–6306.
- 28T. V. Charnikhova, K. Gaus, A. Lumbroso, M. Sanders, J. P. Vincken, A. De Mesmaeker, C. P. Ruyter-Spira, C. Screpanti, H. J. Bouwmeester, Phytochemistry 2017, 137, 123–131.
- 29T. V. Charnikhova, K. Gaus, A. Lumbroso, M. Sanders, J. P. Vincken, A. De Mesmaeker, C. P. Ruyter-Spira, C. Screpanti, H. J. Bouwmeester, Phytochem. Lett. 2018, 24, 172–178.
- 30K. Yoneyama, X. Xie, H. I. Kim, T. Kisugi, T. Nomura, H. Sekimoto, T. Yokota, K. Yoneyama, Planta 2012, 235, 1197–1207.
- 31A. W. Johnson, G. Gowada, A. Hassanali, J. Knox, S. Monaco, Z. Razavi, G. Rosebery, J. Chem. Soc. Perkin Trans. 1 1981, 1734–1743.
- 32F.-D. Boyer, A. de Saint Germain, J.-P. Pillot, J.-B. Pouvreau, V. X. Chen, S. Ramos, A. Stévenin, P. Simier, P. Delavault, J.-M. Beau, C. Rameau, Plant Physiol. 2012, 159, 1524–1544.
- 33F.-D. Boyer, A. de Saint Germain, J.-B. Pouvreau, G. Clavé, J.-P. Pillot, A. Roux, A. Rasmussen, S. Depuydt, D. Lauressergues, N. Frei dit Frey, T. S. A. Heugebaert, C. V. Stevens, D. Geelen, S. Goormachtig, C. Rameau, Mol. Plant 2014, 7, 675–690.
- 34A. Reizelman, M. Scheren, G. H. L. Nefkens, B. Zwanenburg, Synthesis 2000, 2000, 1944–1951.
10.1055/s-2000-8230 Google Scholar
- 35B. Zwanenburg, T. Pospíšil, Mol. Plant 2013, 6, 38–62.
- 36M. Lachia, P. M. J. Jung, A. De Mesmaeker, Tetrahedron Lett. 2012, 53, 4514–4517.
- 37M. Lachia, H. C. Wolf, A. De Mesmaeker, Bioorg. Med. Chem. Lett. 2014, 24, 2123–2128.
- 38M. Lachia, H. C. Wolf, P. J. M. Jung, C. Screpanti, A. De Mesmaeker, Bioorg. Med. Chem. Lett. 2015, 25, 2184–2188.
- 39A. Lumbroso, E. Villedieu-Percheron, D. Zurwerra, C. Screpanti, M. Lachia, P.-Y. Dakas, L. Castelli, V. Paul, H. C. Wolf, D. Sayer, A. Beck, S. Rendine, R. Fonné-Pfister, A. De Mesmaeker, Pest Manage. Sci. 2016, 72, 2054–2068.
- 40M. Lachia, R. Fonné-Pfister, C. Screpanti, S. Rendine, P. Renold, D. Witmer, A. Lumbroso, E. Godineau, D. Hueber, A. De Mesmaeker, Helv. Chim. Acta 2018, 101, e 201800081.
- 41M. Lachia, P.-Y. Dakas, A. De Mesmaeker, Tetrahedron Lett. 2014, 55, 6577–6581.
- 42M. C. Dieckmann, P.-Y. Dakas, A. De Mesmaeker, J. Org. Chem. 2018, 83, 125–135.
- 43Y. Seto, R. Yasui, H. Kameoka, M. Tamiru, M. Cao, R. Terauchi, A. Sakurada, R. Hirano, T. Kisugi, A. Hanada, M. Umehara, E. Seo, K. Akiyama, J. Burke, N. Takeda-Kamiya, W. Li, Y. Hirano, T. Hakoshima, K. Mashiguchi, J. P. Noel, J. Kyozuka, S. Yamaguchi, Nat. Commun. 2019, 10, 191.
- 44N. Shabek, F. Ticchiarelli, H. Mao, T. R. Hinds, O. Leyser, N. Zheng, Nature 2018, 563, 652–656.
- 45R. Yao, Z. Ming, L. Yan, S. Li, F. Wang, S. Ma, C. Yu, M. Yang, L. Chen, L. Chen, Y. Li, C. Yan, D. Miao, Z. Sun, J. Yan, Y. Sun, L. Wang, J. Chu, S. Fan, W. He, H. Deng, F. Nan, J. Li, Z. Rao, Z. Lou, D. Xie, Nature 2016, 536, 469.
- 46C. E. Conn, R. Bythell-Douglas, D. Neumann, S. Yoshida, B. Whittington, J. H. Westwood, K. Shirasu, C. S. Bond, K. A. Dyer, D. C. Nelson, Science 2015, 349, 540–543.
- 47S. Toh, D. Holbrook-Smith, P. J. Stogios, O. Onopriyenko, S. Lumba, Y. Tsuchiya, A. Savchenko, P. McCourt, Science 2015, 350, 203–207.
- 48D. Uraguchi, K. Kuwata, Y. Hijikata, R. Yamaguchi, H. Imaizumi, S. Am, C. Rakers, N. Mori, K. Akiyama, S. Irle, P. McCourt, T. Kinoshita, T. Ooi, Y. Tsuchiya, Science 2018, 362, 1301–1305.
- 49L. H. Zhao, X. Edward Zhou, Z. S. Wu, W. Yi, Y. Xu, S. Li, T. H. Xu, Y. Liu, R. Z. Chen, A. Kovach, Y. Kang, L. Hou, Y. He, C. Xie, W. Song, D. Zhong, Y. Wang, J. Li, C. Zhang, K. Melcher, H. Eric Xu, Cell Res. 2013, 23, 436–439.
- 50C. Hamiaux, R. S. M. Drummond, B. J. Janssen, S. E. Ledger, J. M. Cooney, R. D. Newcomb, K. C. Snowden, Curr. Biol. 2012, 22, 2032–2036.
- 51K. Fukui, D. Yamagami, S. Ito, T. Asami, Front. Plant Sci. 2017, 8, 936.
- 52Y. Xu, T. Miyakawa, S. Nosaki, A. Nakamura, Y. Lyu, H. Nakamura, U. Ohto, H. Ishida, T. Shimizu, T. Asami, M. Tanokura, Nat. Commun. 2018, 9, 3947.
- 53S. Toh, D. Holbrook-Smith, M. E. Stokes, Y. Tsuchiya, P. McCourt, Chem. Biol. 2014, 21, 988–998.
- 54Y. Tsuchiya, M. Yoshimura, Y. Sato, K. Kuwata, S. Toh, D. Holbrook-Smith, H. Zhang, P. McCourt, K. Itami, T. Kinoshita, S. Hagihara, Science 2015, 349, 864–868.
- 55U. Shahul Hameed, I. Haider, M. Jamil, B. A. Kountche, X. Guo, R. A. Zarban, D. Kim, S. Al-Babili, S. T. Arold, EMBO Rep. 2018, 19, e 45619.
- 56S. L. Samodelov, H. M. Beyer, X. Guo, M. Augustin, K.-P. Jia, L. Baz, O. Ebenhöh, P. Beyer, W. Weber, S. Al-Babili, M. D. Zurbriggen, Sci. Adv. 2016, 2, e 1601266.
- 57E. Sanchez, E. Artuso, C. Lombardi, I. Visentin, B. Lace, W. Saeed, M. L. Lolli, P. Kobauri, Z. Ali, F. spyrakis, P. Cubas, F. Cardinale, C. Prandi, J. Exp. Bot. 2018, 69, 2333–2343.
- 58H. Ueda, M. Kusaba, Plant Physiol. 2015, 169, 138–147.
- 59S. Ito, N. Kitahata, M. Umehara, A. Hanada, A. Kato, K. Ueno, K. Mashiguchi, J. Kyozuka, K. Yoneyama, S. Yamaguchi, T. Asami, Plant Cell Physiol. 2010, 51, 1143–1150.
- 60B. A. Kountche, I. Haider, K.-P. Jia, M. Jamil, S. Ali, V. O. Ntui, X. Guo, S. Al-Babili, S. T. Arold, U. S. Hameed, H. Nakamura, K. Jiang, K. Hirabayashi, M. Tanokura, T. Asami, Y. Lyu, J. Exp. Bot. 2017, 69, 2319–2331.
- 61W. Rademacher, J. Plant Growth Regul. 2015, 34, 845–872.
- 62FAO, 2017, “The future of food and agriculture. Trends and challenges”, http://www.fao.org/3/a-i6583e.pdf.
- 63C. V. Ha, M. A. Leyva-González, Y. Osakabe, U. T. Tran, R. Nishiyama, Y. Watanabe, M. Tanaka, M. Seki, S. Yamaguchi, N. V. Dong, K. Yamaguchi-Shinozaki, K. Shinozaki, L. Herrera-Estrella, L.-S. P. Tran, Proc. Natl. Acad. Sci. USA 2014, 111, 851–856.
- 64J. Liu, H. He, M. Vitali, I. Visentin, T. Charnikhova, I. Haider, A. Schubert, C. Ruyter-Spira, H. J. Bouwmeester, C. Lovisolo, F. Cardinale, Planta 2015, 241, 1435–1451.
- 65I. Visentin, M. Vitali, M. Ferrero, Y. Zhang, C. Ruyter-Spira, O. Novák, M. Strnad, C. Lovisolo, A. Schubert, F. Cardinale, New Phytol. 2016, 212, 954–963.
- 66I. Haider, B. Andreo-Jimenez, M. Bruno, A. Bimbo, K. Floková, H. Abuauf, V. O. Ntui, X. Guo, T. Charnikhova, S. Al-Babili, H. J. Bouwmeester, C. Ruyter-Spira, J. Exp. Bot. 2018, 69, 2403–2414.
- 67Z. Min, R. Li, L. Chen, Y. Zhang, Z. Li, M. Liu, Y. Ju, Y. Fang, Plant Physiol. Biochem. 2019, 135, 99–110.
- 68A. Kassam, T. Friedrich, R. Derpsch, J. Kienzle, Field Actions Sci. Rep. 2015, 8, 3966.
- 69M. A. Busari, S. S. Kukal, A. Kaur, R. Bhatt, A. A. Dulazi, Int. Soil Water Conservation Res. 2015, 3, 119–129.
- 70S. Toh, Y. Kamiya, N. Kawakami, E. Nambara, P. McCourt, Y. Tsuchiya, Plant Cell Physiol. 2012, 53, 107–117.
- 71H. Koltai, New Phytol. 2011, 190, 545–549.
- 72J. Sasse, E. Martinoia, T. Northen, Trends Plant Sci. 2018, 23, 25–41.
- 73L. C. Carvalhais, V. A. Rincon-Florez, P. B. Brewer, C. A. Beveridge, P. G. Dennis, P. M. Schenk, Rhizosphere 2019, 9, 18–26.
- 74M. Vurro, C. Prandi, F. Baroccio, Pest Manage. Sci. 2016, 72, 2026–2034.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.