Hidden Conformations in Aspergillus niger Monoamine Oxidase are Key for Catalytic Efficiency
Christian Curado-Carballada
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorDr. Ferran Feixas
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorDr. Javier Iglesias-Fernández
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Prof. Sílvia Osuna
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorChristian Curado-Carballada
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorDr. Ferran Feixas
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorDr. Javier Iglesias-Fernández
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Prof. Sílvia Osuna
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorAbstract
Enzymes exist as an ensemble of conformational states, whose populations can be shifted by substrate binding, allosteric interactions, but also by introducing mutations to their sequence. Tuning the populations of the enzyme conformational states through mutation enables evolution towards novel activity. Herein, Markov state models are used to unveil hidden conformational states of monoamine oxidase from Aspergillus niger (MAO-N). These hidden conformations, not previously observed by any other technique, play a crucial role in substrate binding and enzyme activity. This reveals how distal mutations regulate MAO-N activity by stabilizing these hidden, catalytically important conformational states, but also by modulating the communication pathway between both MAO-N subunits.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201812532-sup-0001-misc_information.pdf9.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Tokuriki, D. S. Tawfik, Science 2009, 324, 203–207;
- 1bM. A. Maria-Solano, E. Serrano-Hervás, A. Romero-Rivera, J. Iglesias-Fernández, S. Osuna, Chem. Commun. 2018, 54, 6622–6634;
- 1cE. C. Campbell, G. J. Correy, P. D. Mabbitt, A. M. Buckle, N. Tokuriki, C. J. Jackson, Curr. Opin. Struct. Biol. 2018, 50, 49–57.
- 2
- 2aE. Campbell, M. Kaltenbach, G. J. Correy, P. D. Carr, B. T. Porebski, E. K. Livingstone, L. Afriat-Jurnou, A. M. Buckle, M. Weik, F. Hollfelder, N. Tokuriki, C. J. Jackson, Nat. Chem. Biol. 2016, 12, 944–950;
- 2bD. D. Boehr, R. Nussinov, P. E. Wright, Nat. Chem. Biol. 2009, 5, 789–796.
- 3
- 3aS. Osuna, G. Jiménez-Osés, E. L. Noey, K. N. Houk, Acc. Chem. Res. 2015, 48, 1080–1089;
- 3bA. Romero-Rivera, M. Garcia-Borràs, S. Osuna, ACS Catal. 2017, 7, 8524–8532;
- 3cG. Jiménez-Osés, S. Osuna, X. Gao, M. R. Sawaya, L. Gilson, S. J. Collier, G. W. Huisman, T. O. Yeates, Y. Tang, K. N. Houk, Nat. Chem. Biol. 2014, 10, 431–436.
- 4
- 4aA. Gora, J. Brezovsky, J. Damborsky, Chem. Rev. 2013, 113, 5871–5923;
- 4bN. Kreß, J. M. Halder, L. R. Rapp, B. Hauer, Curr. Opin. Chem. Biol. 2018, 47, 109–116.
- 5A. Currin, N. Swainston, P. J. Day, D. B. Kell, Chem. Soc. Rev. 2015, 44, 1172–1239.
- 6
- 6aR. Carr, M. Alexeeva, A. Enright, T. S. C. Eve, M. J. Dawson, N. J. Turner, Angew. Chem. Int. Ed. 2003, 42, 4807–4810; Angew. Chem. 2003, 115, 4955–4958;
- 6bD. Ghislieri, A. P. Green, M. Pontini, S. C. Willies, I. Rowles, A. Frank, G. Grogan, N. J. Turner, J. Am. Chem. Soc. 2013, 135, 10863–10869;
- 6cS. Herter, F. Medina, S. Wagschal, C. Benhaïm, F. Leipold, N. J. Turner, Bioorg. Med. Chem. 2017, 25, 30391–30397;
- 6dE. O'Reilly, C. Iglesias, D. Ghislieri, J. Hopwood, J. L. Galman, R. C. Lloyd, N. J. Turner, Angew. Chem. Int. Ed. 2014, 53, 2447–2450; Angew. Chem. 2014, 126, 2479–2482;
- 6eG. Li, P. Yao, R. Gong, J. Li, P. Liu, R. Lonsdale, Q. Wu, J. Lin, D. Zhu, M. T. Reetz, Chem. Sci. 2017, 8, 4093–4099;
- 6fC. J. Dunsmore, R. Carr, T. Fleming, N. J. Turner, J. Am. Chem. Soc. 2006, 128, 2224–2225.
- 7K. E. Atkin, R. Reiss, V. Koehler, K. R. Bailey, S. Hart, J. P. Turkenburg, N. J. Turner, A. M. Brzozowski, G. Grogan, J. Mol. Biol. 2008, 384, 1218–1231.
- 8
- 8aY. Miao, F. Feixas, C. Eun, J. A. McCammon, J. Comput. Chem. 2015, 36, 1536–1549;
- 8bD. Hamelberg, J. Mongan, J. A. McCammon, J. Chem. Phys. 2004, 120, 11919–11929.
- 9A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566.
- 10J. D. Chodera, F. Noé, Curr. Opin. Struct. Biol. 2014, 25, 135–144.
- 11F. Noé, H. Wu, J.-H. Prinz, N. Plattner, J. Chem. Phys. 2013, 139, 184114.
- 12M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M. Hoffmann, N. Plattner, C. Wehmeyer, J.-H. Prinz, F. Noé, J. Chem. Theory Comput. 2015, 11, 5525–5542.
- 13E. Chovancova, A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora, V. Sustr, M. Klvana, P. Medek, L. Biedermannova, J. Sochor, J. Damborsky, PLoS Comput. Biol. 2012, 8, e 1002708.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.