Regiospecific ortho-C−H Allylation of Benzoic Acids
A. Stefania Trita
Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Search for more papers by this authorAgostino Biafora
FB Chemie-Organische Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
Search for more papers by this authorDr. Martin Pichette Drapeau
Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Search for more papers by this authorPhilip Weber
Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Lukas J. Gooßen
Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Search for more papers by this authorA. Stefania Trita
Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Search for more papers by this authorAgostino Biafora
FB Chemie-Organische Chemie, TU Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
Search for more papers by this authorDr. Martin Pichette Drapeau
Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Search for more papers by this authorPhilip Weber
Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Lukas J. Gooßen
Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
Search for more papers by this authorAbstract
A carboxylate-directed ortho-C−H functionalization has been developed and it allows the regiospecific introduction of allyl residues to benzoic acids. In the presence of a [Ru(p-cymene)Cl2]2 and K3PO4, benzoic acids react with allyl acetates at only 50 °C to give the corresponding ortho-allylbenzoic acids. The protocol is generally applicable to both electron-rich and electron-poor benzoic acids in combination with linear and branched allyl acetates. The products can be further functionalized in situ, for example, by double-bond migration, lactonization, or decarboxylation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201712520-sup-0001-misc_information.pdf4.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a Common Fragrance and Flavor Materials: Preparation, Properties and Uses, 5th ed. ), Wiley-VCH, Weinheim, 2006;
- 1bM. Hassam, A. Taher, G. E. Arnott, I. R. Green, W. A. L. van Otterlo, Chem. Rev. 2015, 115, 5462–5569;
- 1cE. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Chem. Educ. 2013, 90, 1403–1405.
- 2C. C. Price in Organic Reactions, Wiley, Hoboken, 2004.
- 3
- 3aF. C. Pigge, Synthesis 2010, 1745–1762;
- 3bF. Colobert, F. R. Leroux in Science of Synthesis: Cross Coupling and Heck-Type Reactions, Vol. 1, Georg Thieme, Stuttgart, 2013.
- 4
- 4aS. Fan, F. Chen, X. Zhang, Angew. Chem. Int. Ed. 2011, 50, 5918–5923; Angew. Chem. 2011, 123, 6040–6045;
- 4bT. Yao, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2011, 50, 2990–2994; Angew. Chem. 2011, 123, 3046–3050;
- 4cY.-B. Yu, S. Fan, X. Zhang, Chem. Eur. J. 2012, 18, 14643–14648;
- 4dS. Y. Lee, J. F. Hartwig, J. Am. Chem. Soc. 2016, 138, 15278–15284;
- 4eY. Makida, H. Ohmiya, M. Sawamura, Angew. Chem. Int. Ed. 2012, 51, 4122–4127; Angew. Chem. 2012, 124, 4198–4203.
- 5N. K. Mishra, S. Sharma, J. Park, S. Han, I. S. Kim, ACS Catal. 2017, 7, 2821–2847.
- 6Y. J. Zhang, E. Skucas, M. J. Krische, Org. Lett. 2009, 11, 4248–4250.
- 7
- 7aH. Wang, N. Schröder, F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 5386–5389; Angew. Chem. 2013, 125, 5495–5499;
- 7bA. Cajaraville, S. López, J. A. Varela, C. Saá, Org. Lett. 2013, 15, 4576–4579;
- 7cC. Feng, D. Feng, T.-P. Loh, Org. Lett. 2013, 15, 3670–3673;
- 7dS.-T. Mei, N.-J. Wang, Q. Ouyang, Y. Wei, Chem. Commun. 2015, 51, 2980–2983;
- 7eH. Dai, C. Yu, C. Lu, H. Yan, Eur. J. Org. Chem. 2016, 1255–1259.
- 8
- 8aS. Oi, Y. Tanaka, Y. Inoue, Organometallics 2006, 25, 4773–4778;
- 8bM. Kim, S. Sharma, N. K. Mishra, S. Han, J. Park, M. Kim, Y. Shin, J. H. Kwak, S. H. Han, I. S. Kim, Chem. Commun. 2014, 50, 11303–11306;
- 8cR. Manikandan, P. Madasamy, M. Jeganmohan, Chem. Eur. J. 2015, 21, 13934–13938;
- 8dS. Nakanowatari, L. Ackermann, Chem. Eur. J. 2015, 21, 16246–16251;
- 8eF. Li, C. Shen, J. Zhang, L. Wu, X. Zhuo, L. Ding, G. Zhong, Adv. Synth. Catal. 2016, 358, 3932–3937;
- 8fG. S. Kumar, M. Kapur, Org. Lett. 2016, 18, 1112–1115.
- 9
- 9aT. Gensch, S. Vásquez-Céspedes, D.-G. Yu, F. Glorius, Org. Lett. 2015, 17, 3714–3717;
- 9bY. Suzuki, B. Sun, K. Sakata, T. Yoshino, S. Matsunaga, M. Kanai, Angew. Chem. Int. Ed. 2015, 54, 9944–9947; Angew. Chem. 2015, 127, 10082–10085;
- 9cM. Moselage, N. Sauermann, J. Koeller, W. Liu, D. Gelman, L. Ackermann, Synlett 2015, 26, 1596–1600;
- 9dR. Manoharan, G. Sivakumar, M. Jeganmohan, Chem. Commun. 2016, 52, 10533–10536;
- 9eH. Wang, M. M. Lorion, L. Ackermann, ACS Catal. 2017, 7, 3430–3433.
- 10
- 10aY. Aihara, N. Chatani, J. Am. Chem. Soc. 2013, 135, 5308–5311;
- 10bX. Cong, Y. Li, Y. Wei, X. Zeng, Org. Lett. 2014, 16, 3926–3929;
- 10cN. Barsu, D. Kalsi, B. Sundararaju, Chem. Eur. J. 2015, 21, 9364–9368.
- 11
- 11aS. Asako, J. Norinder, L. Ilies, N. Yoshikai, E. Nakamura, Adv. Synth. Catal. 2014, 356, 1481–1485;
- 11bG. Cera, T. Haven, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 1484–1488; Angew. Chem. 2016, 128, 1506–1510.
- 12
- 12aW. Liu, S. C. Richter, Y. Zhang, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 7747–7750; Angew. Chem. 2016, 128, 7878–7881;
- 12bQ. Lu, F. J. R. Klauck, F. Glorius, Chem. Sci. 2017, 8, 3379–3383.
- 13 C−H Bond Activation and Catalytic Functionalization (Eds.: ), Springer International Publishing, Switzerland, 2016.
- 14M. Font, J. M. Quibell, G. J. P. Perry, I. Larrosa, Chem. Commun. 2017, 53, 5584–5597.
- 15For pionieering work, see
- 15aL. J. Gooßen, G. Deng, L. M. Levy, Science 2006, 313, 662–664; for reviews, see
- 15bN. Rodríguez, L. J. Goossen, Chem. Soc. Rev. 2011, 40, 5030–5048;
- 15cA. Biafora, L. J. Gooßen, Synlett 2017, 28, 1885–1890;
- 15dL. J. Goossen, K. Goossen in Inventing Reactions, Decarboxylative Coupling Reactions, Springer, Berlin, 2012, pp. 121–141.
- 16
- 16aK. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788–802;
- 16bS. De Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461–1479;
- 16cM. Pichette-Drapeau, L. J. Gooßen, Chem. Eur. J. 2016, 22, 18654–18677.
- 17
- 17aH. A. Chiong, Q.-N. Pham, O. Daugulis, J. Am. Chem. Soc. 2007, 129, 9879–9884;
- 17bD.-H. Wang, T.-S. Mei, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 17676–17677;
- 17cJ. Cornella, M. Righi, I. Larrosa, Angew. Chem. Int. Ed. 2011, 50, 9429–9432; Angew. Chem. 2011, 123, 9601–9604;
- 17dJ. Luo, S. Preciado, I. Larrosa, J. Am. Chem. Soc. 2014, 136, 4109–4112;
- 17eP. Gandeepan, P. Rajamalli, C.-H. Cheng, Chem. Eur. J. 2015, 21, 9198–9203;
- 17fC. Zhu, Y. Zhang, J. Kan, H. Zhao, W. Su, Org. Lett. 2015, 17, 3418–3421;
- 17gL. Huang, D. Hackenberger, L. J. Gooßen, Angew. Chem. Int. Ed. 2015, 54, 12607–12611; Angew. Chem. 2015, 127, 12798–12802;
- 17hY. Zhang, H. Zhao, M. Zhang, W. Su, Angew. Chem. Int. Ed. 2015, 54, 3817–3821; Angew. Chem. 2015, 127, 3888–3892;
- 17iA. Biafora, T. Krause, D. Hackenberger, F. Belitz, L. J. Gooßen, Angew. Chem. Int. Ed. 2016, 55, 14752–14755; Angew. Chem. 2016, 128, 14972–14975;
- 17jL. Huang, D. J. Weix, Org. Lett. 2016, 18, 5432–5435;
- 17kR. Mei, C. Zhu, L. Ackermann, Chem. Commun. 2016, 52, 13171–13174;
- 17lM. Simonetti, D. M. Cannas, A. Panigrahi, S. Kujawa, M. Kryjewski, P. Xie, I. Larrosa, Chem. Eur. J. 2017, 23, 549–553.
- 18
- 18aK. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9, 1407–1409;
- 18bK. Ueura, T. Satoh, M. Miura, J. Org. Chem. 2007, 72, 5362–5367;
- 18cS. Warratz, C. Kornhaaß, A. Cajaraville, B. Niepötter, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2015, 54, 5513–5517; Angew. Chem. 2015, 127, 5604–5608;
- 18dL. Huang, A. Biafora, G. Zhang, V. Bragoni, L. J. Gooßen, Angew. Chem. Int. Ed. 2016, 55, 6933–6937; Angew. Chem. 2016, 128, 7047–7051;
- 18eJ. Zhang, R. Shrestha, J. F. Hartwig, P. Zhao, Nat. Chem. 2016, 8, 1144–1151;
- 18fN. Y. P. Kumar, A. Bechtoldt, K. Raghuvanshi, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 6929–6932; Angew. Chem. 2016, 128, 7043–7046;
- 18gA. Biafora, B. A. Khan, J. Bahri, J. M. Hewer, L. J. Goossen, Org. Lett. 2017, 19, 1232–1235;
- 18hA. Mandal, H. Sahoo, S. Dana, M. Baidya, Org. Lett. 2017, 19, 4138–4141.
- 19P. Mamone, G. Danoun, L. J. Gooßen, Angew. Chem. Int. Ed. 2013, 52, 6704–6708; Angew. Chem. 2013, 125, 6836–6840.
- 20S. Bhadra, W. I. Dzik, L. J. Gooßen, Angew. Chem. Int. Ed. 2013, 52, 2959–2962; Angew. Chem. 2013, 125, 3031–3035.
- 21T.-S. Mei, R. Giri, N. Maugel, J.-Q. Yu, Angew. Chem. Int. Ed. 2008, 47, 5215–5219; Angew. Chem. 2008, 120, 5293–5297.
- 22
- 22aF.-N. Ng, Z. Zhou, W.-Y. Yu, Chem. Eur. J. 2014, 20, 4474–4480;
- 22bX.-Y. Shi, X.-F. Dong, J. Fan, K.-Y. Liu, J.-F. Wei, C.-J. Li, Sci. China Chem. 2015, 58, 1286–1291;
- 22cD. Lee, S. Chang, Chem. Eur. J. 2015, 21, 5364–5368.
- 23
- 23aM. Kawatsura, F. Ata, S. Hayase, T. Itoh, Chem. Commun. 2007, 4283–4285;
- 23bN. Kanbayashi, K. Onitsuka, J. Am. Chem. Soc. 2010, 132, 1206–1207;
- 23cY. Suzuki, T. Seki, S. Tanaka, M. Kitamura, J. Am. Chem. Soc. 2015, 137, 9539–9542.
- 24T.-Y. Luh, M. Leung, K.-T. Wong, Chem. Rev. 2000, 100, 3187–3204.
- 25Y. Kuninobu, K. Ohta, K. Takai, Chem. Commun. 2011, 47, 10791–10793.
- 26A. Bernhardt, H. Kelm, F. W. Patureau, ChemCatChem 2018, https://doi.org/10.1002/cctc.201701721.
- 27I. A. Shuklov, N. V. Dubrovina, A. Börner, Synthesis 2007, 2925–2943.
- 28S. Takahashi, L. A. Cohen, H. K. Miller, E. G. Peake, J. Org. Chem. 1971, 36, 1205–1209.
- 29
- 29aA. Fürstner, T. Dierkes, O. R. Thiel, G. Blanda, Chem. Eur. J. 2001, 7, 5286–5298;
10.1002/1521-3765(20011217)7:24<5286::AID-CHEM5286>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 29bK. L. Erickson, J. A. Beutler, J. H. Cardellina, M. R. Boyd, J. Org. Chem. 1997, 62, 8188–8192.
- 30Z. Li, J. Zhang, C. Brouwer, C.-G. Yang, N. W. Reich, C. He, Org. Lett. 2006, 8, 4175–4178.
- 31M. Devys, J.-F. Bousquet, A. Kollmann, M. Barbier, Phytochemistry 1980, 19, 2221–2222.
- 32
- 32aW. Li, M. P. Wiesenfeldt, F. Glorius, J. Am. Chem. Soc. 2017, 139, 2585–2588;
- 32bH. Sun, C. J. Ho, F. Ding, I. Soehano, X.-W. Liu, Z.-X. Liang, J. Am. Chem. Soc. 2012, 134, 11924–11927;
- 32cU. Höller, G. M. König, A. D. Wright, J. Nat. Prod. 1999, 62, 114–118.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.