Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection
Corresponding Author
Dr. Beatriz Jurado-Sánchez
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
These authors contributed equally.
Search for more papers by this authorMarta Pacheco
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
These authors contributed equally.
Search for more papers by this authorJaime Rojo
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Prof. Alberto Escarpa
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
Search for more papers by this authorCorresponding Author
Dr. Beatriz Jurado-Sánchez
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
These authors contributed equally.
Search for more papers by this authorMarta Pacheco
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
These authors contributed equally.
Search for more papers by this authorJaime Rojo
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Prof. Alberto Escarpa
Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
Search for more papers by this authorAbstract
Magnetocatalytic hybrid Janus micromotors encapsulating phenylboronic acid (PABA) modified graphene quantum dots (GQDs) are described herein as ultrafast sensors for the detection of deadly bacteria endotoxins. A bottom-up approach was adopted to synthesize an oil-in-water emulsion containing the GQDs along with a high loading of platinum and iron oxide nanoparticles on one side of the Janus micromotor body. The two different “active regions” enable highly efficient propulsion in the presence of hydrogen peroxide or magnetic actuation without the addition of a chemical fuel. Fluorescence quenching was observed upon the interaction of GQDs with the target endotoxin (LPS), whereby the PABA tags acted as highly specific recognition receptors of the LPS core polysaccharide region. Such adaptive hybrid operation and highly specific detection hold considerable promise for diverse clinical, agrofood, and biological applications and integration in future lab-on-chip technology.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201701396-sup-0001-misc_information.pdf1.2 MB | Supplementary |
ange201701396-sup-0001-Video_S1.avi1.4 MB | Supplementary |
ange201701396-sup-0001-Video_S2.avi969.5 KB | Supplementary |
ange201701396-sup-0001-Video_S3.avi482.4 KB | Supplementary |
ange201701396-sup-0001-Video_S4.avi416.7 KB | Supplementary |
ange201701396-sup-0001-Video_S5.avi273.9 KB | Supplementary |
ange201701396-sup-0001-Video_S6.avi509.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Beutler, E. T. Rietschel, Nat. Rev. Immunol. 2003, 3, 169–176;
- 1bV. A. K. Rathinam, K. A. Fitzgerald, Nature 2013, 501, 173–175.
- 2I. Paciello, A. Silipo, L. Lembo-Fazio, L. Curcurù, A. Zumsteg, G. Noël, V. Ciancarella, L. Sturiale, A. Molinaro, M. L. Bernardini, Proc. Natl. Acad. Sci. USA 2013, 110, E 4345–E4354.
- 3A. P. Das, P. S. Kumar, S. Swain, Biosens. Bioelectron. 2014, 51, 62–75.
- 4H. Jiang, D. Jiang, J. Shao, X. Sun, J. Wang, Sci. Rep. 2016, 6, 36987.
- 5
- 5aY. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, O. G. Schmidt, Adv. Mater. 2008, 20, 4085–4090;
- 5bA. A. Solovev, Y. Mei, E. B. Ureña, G. Huang, O. G. Schmidt, Small 2009, 5, 1688–1692.
- 6
- 6aW. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, V. H. Crespi, J. Am. Chem. Soc. 2004, 126, 13424–13431;
- 6bG. A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Adv. Mater. 2005, 17, 3011–3018;
- 6cS. Sánchez, M. Pumera, Chem. Asian J. 2009, 4, 1402–1410;
- 6dY. Mei, A. A. Solovev, S. Sanchez, O. G. Schmidt, Chem. Soc. Rev. 2011, 40, 2109–2119;
- 6eW. Wang, W. Duan, S. Ahmed, T. E. Mallouk, A. Sen, Nano Today 2013, 8, 531–534;
- 6fV. Magdanz, O. G. Schmidt, Expert Opin. Drug Delivery 2014, 11, 1125–1129;
- 6gJ. Li, I. Rozen, J. Wang, ACS Nano 2016, 10, 5619–5634;
- 6hJ. Katuri, X. Ma, M. M. Stanton, S. Sánchez, Acc. Chem. Res. 2017, 50, 2–11;
- 6iJ. Wang, Nanomachines: Fundamentals and Applications, Wiley-VCH, Weinheim, 2013;
10.1002/9783527651450 Google Scholar
- 6jB. Kherzi, M. Pumera, Nanoscale 2016, 8, 17415–17421.
- 7
- 7aA. Walther, A. H. E. Müller, Chem. Rev. 2013, 113, 5194–5261;
- 7bY. Yi, L. Sanchez, Y. Gao, Y. Yu, Analyst 2016, 141, 3526–3539;
- 7cG. Loget, J. Roche, A. Kuhn, Adv. Mater. 2012, 24, 5111–5116.
- 8C. Chen, E. Karshalev, J. Li, F. Soto, R. Castillo, I. Campos, F. Mou, J. Guan, J. Wang, ACS Nano 2016, 10, 10389–10396.
- 9J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, J. Wang, Nano Lett. 2016, 16, 6604–6609.
- 10J. Li, W. Gao, R. Dong, A. Pei, S. Sattayasamitsathit, J. Wang, Nat. Commun. 2014, 5, 5026.
- 11
- 11aJ. Li, V. V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann, R. Dong, W. Gao, B. Jurado-Sanchez, Y. Fedorak, J. Wang, ACS Nano 2014, 8, 11118–11125;
- 11bB. Jurado-Sánchez, S. Sattayasamitsathit, W. Gao, L. Santos, Y. Fedorak, V. V. Singh, J. Orozco, M. Galarnyk, J. Wang, Small 2015, 11, 499–506.
- 12
- 12aP. Schattling, B. Thingholm, B. Städler, Chem. Mater. 2015, 27, 7412–7418;
- 12bX. Ma, X. Wang, K. Hahn, S. Sanchez, ACS Nano 2016, 10, 3597–3605;
- 12cR. Dong, J. Li, I. Rozen, B. Ezhilan, T. Xu, C. Christianson, W. Gao, D. Saintillan, B. Ren, J. Wang, Sci. Rep. 2015, 5, 13226;
- 12dK. K. Dey, S. Bhandari, D. Bandyopadhyay, S. Basu, A. Chattopadhyay, Small 2013, 9, 1916–1920;
- 12eM. Sentic, S. Arbault, B. Goudeau, D. Manojlovic, A. Kuhn, L. Bouffier, N. Sojic, Chem. Commun. 2014, 50, 10202–10205.
- 13B. Jurado-Sánchez, A. Escarpa, Electroanalysis 2017, 29, 14–23.
- 14X. Lin, Z. Wu, Y. Wu, M. Xuan, Q. He, Adv. Mater. 2016, 28, 1060–1072.
- 15
- 15aD. A. Wilson, R. J. M. Nolte, J. C. M. Van Hest, Nat. Chem. 2012, 4, 268–274;
- 15bL. K. E. A. Abdelmohsen, M. Nijemeisland, G. M. Pawar, G. J. A. Janssen, R. J. M. Nolte, J. C. M. Van Hest, D. A. Wilson, ACS Nano 2016, 10, 2652–2660.
- 16W. Gao, M. Liu, L. Liu, H. Zhang, B. Dong, C. Y. Li, Nanoscale 2015, 7, 13918–13923.
- 17A. X. Lu, Y. Liu, H. Oh, A. Gargava, E. Kendall, Z. Nie, D. L. DeVoe, S. R. Raghavan, ACS Appl. Mater. Interfaces 2016, 8, 15676–15683.
- 18H. Wang, G. Zhao, M. Pumera, J. Am. Chem. Soc. 2014, 136, 2719–2722.
- 19Y. Wu, T. Si, X. Lin, Q. He, Chem. Commun. 2015, 51, 511–514.
- 20R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, ACS Nano 2016, 10, 839–844.
- 21W. He, J. Frueh, N. Hu, L. Liu, M. Gai, Q. He, Adv. Sci. 2016, https://doi.org/10.1002/advs.201600206.
- 22
- 22aL. Baraban, D. Makarov, O. G. Schmidt, G. Cuniberti, P. Leiderer, A. Erbe, Nanoscale 2013, 5, 1332–1336;
- 22bF. Peng, Y. Tu, Y. Men, J. C. M. van Hest, D. A. Wilson, Adv. Mater. 2016, https://doi.org/10.1002/adma.201604996.
- 23J. Orozco, B. Jurado-Sanchez, G. Wagner, W. Gao, R. Vazquez-Duhalt, S. Sattayasamitsathit, M. Galarnyk, A. Cortes, D. Saintillan, J. Wang, Langmuir 2014, 30, 5082–5087.
- 24B. Jurado-Sánchez, A. Escarpa, J. Wang, Chem. Commun. 2015, 51, 14088–14091.
- 25D. Takahashi, T. Miura, K. Toshima, Chem. Commun. 2012, 48, 7595.
- 26
- 26aZ.-b. Qu, X. Zhou, L. Gu, R. Lan, D. Sun, D. Yu, G. Shi, Chem. Commun. 2013, 49, 9830;
- 26bS. F. Wuister, C. de Mello Donegá, A. Meijerink, J. Am. Chem. Soc. 2004, 126, 10397–10402.
- 27Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J. Z. Sun, B. Z. Tang, J. Am. Chem. Soc. 2011, 133, 660–663.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.