Ultra-Fast Supercritical Hydrothermal Synthesis of Tobermorite under Thermodynamically Metastable Conditions
Marta Diez-Garcia
CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
Sustainable Construction Division, Tecnalia Parque tecnológico de Bizkaia, C/Geldo, Edif. 700, 48160 Derio, Spain
UPV-EHU, Dep. Mining-Metallurgy Engeneering and Mat. Science, Alameda Urquijo s/n, 48013 Bilbao, Spain
Search for more papers by this authorCorresponding Author
Juan J. Gaitero
Sustainable Construction Division, Tecnalia Parque tecnológico de Bizkaia, C/Geldo, Edif. 700, 48160 Derio, Spain
Search for more papers by this authorJorge S. Dolado
Sustainable Construction Division, Tecnalia Parque tecnológico de Bizkaia, C/Geldo, Edif. 700, 48160 Derio, Spain
Search for more papers by this authorCorresponding Author
Cyril Aymonier
CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
Search for more papers by this authorMarta Diez-Garcia
CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
Sustainable Construction Division, Tecnalia Parque tecnológico de Bizkaia, C/Geldo, Edif. 700, 48160 Derio, Spain
UPV-EHU, Dep. Mining-Metallurgy Engeneering and Mat. Science, Alameda Urquijo s/n, 48013 Bilbao, Spain
Search for more papers by this authorCorresponding Author
Juan J. Gaitero
Sustainable Construction Division, Tecnalia Parque tecnológico de Bizkaia, C/Geldo, Edif. 700, 48160 Derio, Spain
Search for more papers by this authorJorge S. Dolado
Sustainable Construction Division, Tecnalia Parque tecnológico de Bizkaia, C/Geldo, Edif. 700, 48160 Derio, Spain
Search for more papers by this authorCorresponding Author
Cyril Aymonier
CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
Search for more papers by this authorAbstract
Tobermorite is a fibrillar mineral of the family of calcium silicates. In spite of not being abundant in nature, its structure and properties are reasonably well known because of its interest in the construction industry. Currently, tobermorite is synthesized by hydrothermal methods at mild temperatures. The problem is that such processes are very slow (>5 h) and temperature cannot be increased to speed them up because tobermorite is metastable over 130 °C. Furthermore the product obtained is generally foil-like and not very crystalline. Herein we propose an alternative synthesis method based on the use of a continuous flow reactor and supercritical water. In spite of the high temperature, the transformation of tobermorite to more stable phases can be prevented by accurately controlling the reaction time. As a result, highly crystalline fibrillar tobermorite can be obtained in just a few seconds under thermodynamically metastable conditions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201611858-sup-0001-misc_information.pdf242.4 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1I. G. Richardson, Cem. Concr. Res. 2004, 34, 1733–1777.
- 2H. M. Jennings, Cem. Concr. Res. 2000, 30, 855–863.
- 3H. F. W. Taylor, J. Am. Ceram. Soc. 1986, 69, 464–467.
- 4M. D. Jackson, J. Moon, E. Gotti, R. Taylor, S. R. Chae, M. Kunz, A. H. Emwas, C. Meral, P. Guttmann, P. Levitz, et al., J. Am. Ceram. Soc. 2013, 96, 2598–2606.
- 5T. Mitsuda, K. Sasaki, I. Hideki, J. Am. Ceram. Soc. 1992, 75, 1858–1863.
- 6G. Land, D. Stephan, Cem. Concr. Compos. 2015, 57, 64–67.
- 7U. Berg, D. Donnert, P. G. Weidler, E. Kaschka, G. Knoll, R. Nüesch, Water Sci. Technol. 2006, 53, 131–138.
- 8O. P. Shrivastava, R. Shrivastava, Bull. Mater. Sci. 2000, 23, 515–520.
- 9S. Komarneni, D. M. Roy, Science 1983, 221, 647–648.
- 10S. Komarneni, E. Breval, D. M. Roy, R. Roy, Cem. Concr. Res. 1988, 18, 204–220.
- 11M. Tsuji, S. Komarneni, P. Malla, J. Am. Ceram. Soc. 1991, 74, 274–279.
- 12S. Shaw, S. M. Clark, C. M. B. Henderson, Chem. Geol. 2000, 167, 129–140.
- 13S. Merlino, E. Bonaccorsi, T. Armbruster, Eur. J. Mineral. 2001, 13, 577–590.
- 14R. J. Myers, E. L'Hôpital, J. L. Provis, B. Lothenbach, Cem. Concr. Res. 2015, 68, 83–93.
- 15H. F. W. Taylor, 6th Natl. Conf. Clays Clay Miner. 1959, pp. 101–109.
- 16T. Mitsuda, H. W. F. Taylor, Mineral. Mag. 1978, 42, 229–235.
- 17N. S. Bell, S. Venigalla, P. M. Gill, J. H. Adair, J. Am. Ceram. Soc. 1996, 79, 2175–2178.
- 18X. Huang, D. Jiang, S. Tan, J. Eur. Ceram. Soc. 2003, 23, 123–126.
- 19N. Y. Mostafa, A. A. Shaltout, H. Omar, S. A. Abo-El-Enein, J. Alloys Compd. 2009, 467, 332–337.
- 20S. Tränkle, D. Jahn, T. Neumann, L. Nicoleau, N. Hüsing, D. Volkmer, J. Mater. Chem. A 2013, 1, 10318.
- 21D. Palubinskaite, A. Kantautas, Mater. Sci. 2006, 24, 395–403.
- 22K. Matsui, A. Ogawa, J. Kikuma, M. Tsunashima, T. Ishikawa, S. Matsuno, Denver X-Ray Conf. Appl. X-Ray Anal. 2009, pp. 1–7.
- 23A. Hartmann, J. Buhl, Mater. Res. Bull. 2010, 45, 396–402.
- 24A. Hartmann, M. Khakhutov, J. Buhl, Mater. Res. Bull. 2014, 51, 389–396.
- 25K. Lin, J. Chang, J. Lu, Mater. Lett. 2006, 60, 3007–3010.
- 26L. Black, K. Garbev, P. Stemmermann, K. R. Hallam, G. C. Allen, Cem. Concr. Res. 2003, 33, 899–911.
- 27S. A. S. El-Hemaly, T. Mitsuda, H. F. W. Taylor, Cem. Concr. Res. 1977, 7, 429–438.
- 28M. Sakiyama, T. Mitsuda, Cem. Concr. Res. 1977, 7, 681–685.
- 29R. Jauberthie, M. Temimi, M. Laquerbe, Cem. Concr. Res. 1996, 26, 1335–1339.
- 30R. Gabrovšek, B. Kurbus, D. Mueller, W. Wieker, Cem. Concr. Res. 1993, 321–329.
- 31T. Mitsuda, H. F. W. Taylor, Cem. Concr. Res. 1975, 5, 203–210.
- 32C. F. Chan, T. Mitsuda, Cem. Concr. Res. 1978, 8, 135–138.
- 33S. Y. Hong, F. P. Glasser, Cem. Concr. Res. 2004, 34, 1529–1534.
- 34T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 1992, 75, 1019–1022.
- 35C. Aymonier, A. Loppinet-serani, H. Rever, Y. Garrabos, J. Supercrit. Fluids 2006, 38, 242–251.
- 36F. Cansell, C. Aymonier, J. Supercrit. Fluids 2009, 47, 508–516.
- 37A. Chakrabarty, S. Marre, R. F. Landis, V. M. Rotello, U. Maitra, A. Del Guerzo, C. Aymonier, J. Mater. Chem. C 2015, 3, 7561–7566.
- 38K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 2007, 53, 117–166.
- 39P. S. Shah, T. Hanrath, K. P. Johnston, B. A. Korgel, J. Phys. Chem. B 2004, 108, 9574–9587.
- 40A. Chaudhry, S. Haque, S. Kellici, P. Boldrin, I. Rehman, F. A. Khalid, J. A. Darr, Chem. Commun. 2006, 2286–2288.
- 41R. I. Gruar, C. J. Tighe, P. Southern, Q. A. Pankhurst, J. A. Darr, Ind. Eng. Chem. Res. 2015, 54, 7436–7451.
- 42G. Philippot, E. D. Boejesen, C. Elissalde, M. Maglione, C. Aymonier, B. B. Iversen, Chem. Mater. 2016, 28, 3391–3400.
- 43G. Philippot, K. M. Ø. Jensen, M. Christensen, C. Elissalde, M. Maglione, B. B. Iversen, C. Aymonier, J. Supercrit. Fluids 2014, 87, 111–117.
- 44A. Dumas, M. Claverie, C. Slostowski, G. Aubert, C. Careme, C. Le Roux, P. Micoud, F. Martin, C. Aymonier, Angew. Chem. Int. Ed. 2016, 55, 9868–9871; Angew. Chem. 2016, 128, 10022–10025.
- 45M. Monasterio, On the Dielectric Properties of Water Confined in Cement—like Materials, Universidad del País Vasco, 2015.
- 46A. Vidmer, G. Sclauzero, A. Pasquarello, Cem. Concr. Res. 2014, 60, 11–23.
- 47M. Monasterio, J. J. Gaitero, H. Manzano, J. S. Dolado, S. Cerveny, Langmuir 2015, 31, 4964–4972.
- 48H. Manzano, J. S. Dolado, M. Griebel, J. Hamaekers, Phys. Status Solidi A 2008, 205, 1324–1329.
- 49P. Faucon, J. C. Petit, T. Charpentier, J. F. Jacquinot, F. Adenot, J. Am. Ceram. Soc. 1999, 82, 1307–1312.
- 50L. Black, K. Garbev, A. Stumm, Adv. Appl. Ceram. 2009, 108, 137–144.
- 51H. D. Megaw, C. H. Kelsey, Nature 1956, 177, 390–391.
- 52S. A. Hamid, J. Cryst. Growth 1979, 46, 421–426.
- 53J. J. Thomas, H. M. Jennings, J. J. Chen, J. Phys. Chem. C 2009, 113, 4327–4334.
- 54“Plasticizer-Containing Hardening Accelerator Composition”: L. Nicoleau, E. Jetzlsperger, D. Fridrich, M. Vierle, K. Lorenz, G. Albrecht, D. Schmitt, T. Wohlhaupter, R. Dorfner, H. Leitner, et al., US8653186 B2, 2010.
- 55H. Manzano, A. N. Enyashin, J. S. Dolado, A. Ayuela, J. Frenzel, G. Seifert, Adv. Mater. 2012, 24, 3239–3245.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.