Maximizing Coordination Capsule–Guest Polar Interactions in Apolar Solvents Reveals Significant Binding
David P. August
EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
Search for more papers by this authorDr. Gary S. Nichol
EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
Search for more papers by this authorCorresponding Author
Dr. Paul J. Lusby
EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
Search for more papers by this authorDavid P. August
EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
Search for more papers by this authorDr. Gary S. Nichol
EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
Search for more papers by this authorCorresponding Author
Dr. Paul J. Lusby
EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
Search for more papers by this authorAbstract
Guest encapsulation underpins the functional properties of self-assembled capsules yet identifying systems capable of strongly binding small organic molecules in solution remains a challenge. Most coordination capsules rely on the hydrophobic effect to ensure effective solution-phase association. In contrast, we show that using non-interacting anions in apolar solvents can maximize favorable interactions between a cationic Pd2L4 host and charge-neutral guests resulting in a dramatic increase in binding strength. With quinone-type guests, association constants in excess of 108 m−1 were observed, comparable to the highest previously recorded constant for a metallosupramolecular capsule. Modulation of optoelectronic properties of the guests was also observed, with encapsulation either changing or switching-on luminescence not present in the bulk phase.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201608229-sup-0001-misc_information.pdf8.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For representative examples, see
- 1aA. Suzuki, K. Kondo, Y. Sei, M. Akita, M. Yoshizawa, Chem. Commun. 2016, 52, 3151–3154;
- 1bP. D. Frischmann, V. Kunz, F. Würthner, Angew. Chem. Int. Ed. 2015, 54, 7285–7289; Angew. Chem. 2015, 127, 7393–7397;
- 1cC. He, J. Wang, P. Wu, L. Jia, Y. Bai, Z. Zhangab, C. Duan, Chem. Commun. 2012, 48, 11880–11882;
- 1dO. Chepelin, J. Ujma, X. Wu, A. M. Z. Slawin, M. B. Pitak, S. J. Coles, J. Michel, A. C. Jones, P. E. Barran, P. J. Lusby, J. Am. Chem. Soc. 2012, 134, 19334–19337.
- 2For representative examples, see
- 2aP. Howlader, P. Das, E. Zangrando, P. S. Mukherjee, J. Am. Chem. Soc. 2016, 138, 1668–1676;
- 2bW. Cullen, M. C. Misuraca, C. A. Hunter, N. H. Williams, M. D. Ward, Nat. Chem. 2016, 8, 231–236;
- 2cD. M. Kaphan, M. D. Levin, R. G. Bergman, K. N. Raymond, F. D. Toste, Science 2015, 350, 1235–1238;
- 2dA. G. Salles, S. Zarra, R. M. Turner, J. R. Nitschke, J. Am. Chem. Soc. 2013, 135, 19143–19146;
- 2eT. Murase, Y. Nishijima, M. Fujita, J. Am. Chem. Soc. 2012, 134, 162–164.
- 3For representative examples, see
- 3aM. Yamashina, Y. Sei, M. Akita, M. Yoshizawa, Nat. Commun. 2014, 5, 4662;
- 3bS. Horiuchi, T. Murase, M. Fujita, J. Am. Chem. Soc. 2011, 133, 12445–12447;
- 3cP. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697–1699;
- 3dT. Iwasawa, R. J. Hooley, J. Rebek, Jr., Science 2007, 317, 493–496.
- 4For examples of counteranion/cation binding, see
- 4aM. D. Johnstone, E. K. Schwarze, J. Ahrens, D. Schwarzer, J. J. Holstein, B. Dittrich, F. M. Pfeffer, G. H. Clever, Chem. Eur. J. 2016, 22, 10791–10795;
- 4bS. Freye, J. Hey, A. Torras-Galán, D. Stalke, R. Herbst-Irmer, M. John, G. H. Clever, Angew. Chem. Int. Ed. 2012, 51, 2191–2194; Angew. Chem. 2012, 124, 2233–2237;
- 4cI. A. Riddell, M. M. J. Smulders, J. K. Clegg, Y. R. Hristova, B. Breiner, J. D. Thoburn, J. R. Nitschke, Nat. Chem. 2012, 4, 751–756;
- 4dC. R. K. Glasson, J. K. Clegg, J. C. McMurtrie, G. V. Meehan, L. F. Lindoy, C. A. Motti, B. Moubaraki, K. S. Murray, J. D. Cashion, Chem. Sci. 2011, 2, 540–543;
- 4eY. R. Hristova, M. M. J. Smulders, J. K. Clegg, B. Breiner, J. R. Nitschke, Chem. Sci. 2011, 2, 638;
- 4fG. H. Clever, S. Tashiro, M. Shionoya, Angew. Chem. Int. Ed. 2009, 48, 7010–7012; Angew. Chem. 2009, 121, 7144–7146;
- 4gJ. S. Fleming, K. L. V. Mann, C.-A. Carraz, E. Psillakis, J. C. Jeffery, J. A. McCleverty, M. D. Ward, Angew. Chem. Int. Ed. 1998, 37, 1279–1281;
10.1002/(SICI)1521-3773(19980518)37:9<1279::AID-ANIE1279>3.0.CO;2-Q CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 1315–1318;
- 4hD. L. Caulder, R. E. Powers, T. N. Parac, K. N. Raymond, Angew. Chem. Int. Ed. 1998, 37, 1840–1843;
10.1002/(SICI)1521-3773(19980803)37:13/14<1840::AID-ANIE1840>3.0.CO;2-D CAS Web of Science® Google ScholarAngew. Chem. 1998, 110, 1940–1943;10.1002/(SICI)1521-3757(19980703)110:13/14<1940::AID-ANGE1940>3.0.CO;2-J Web of Science® Google Scholar
- 4iM. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K. Ogura, Nature 1995, 378, 469.
- 5For examples of charge neutral-guest binding, see
- 5aW. Cullen, S. Turega, C. A. Hunter, M. D. Ward, Chem. Sci. 2015, 6, 2790–2794;
- 5bP. R. Symmers, M. J. Burke, D. P. August, P. I. T. Thomson, G. S. Nichol, M. R. Warren, C. J. Campbell, P. J. Lusby, Chem. Sci. 2015, 6, 756–760;
- 5cS. Turega, W. Cullen, M. Whitehead, C. A. Hunter, M. D. Ward, J. Am. Chem. Soc. 2014, 136, 8475–8483;
- 5dJ. L. Bolliger, T. K. Ronson, M. Ogawa, J. R. Nitschke, J. Am. Chem. Soc. 2014, 136, 14545–14553;
- 5eN. Kishi, Z. Li, Y. Sei, M. Akita, K. Yoza, J. S. Siegel, M. Yoshizawa, Chem. Eur. J. 2013, 19, 6313–6320;
- 5fF. Schmitt, J. Freudenreich, N. P. E. Barry, L. Juillerat-Jeanneret, G. Süss-Fink, B. Therrien, J. Am. Chem. Soc. 2012, 134, 754–757;
- 5gP. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, Angew. Chem. Int. Ed. 2008, 47, 8297–8301; Angew. Chem. 2008, 120, 8421–8425;
- 5hS. M. Biros, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2007, 129, 12094–12095;
- 5iT. Kusukawa, M. Fujita, Angew. Chem. Int. Ed. 1998, 37, 3142–3144;
10.1002/(SICI)1521-3773(19981204)37:22<3142::AID-ANIE3142>3.0.CO;2-9 CAS PubMed Web of Science® Google ScholarAngew. Chem. 1998, 110, 3327–3329.10.1002/(SICI)1521-3757(19981116)110:22<3327::AID-ANGE3327>3.0.CO;2-X Web of Science® Google Scholar
- 6
- 6aF. Biedermann, W. M. Nau, H.-J. Schneider, Angew. Chem. Int. Ed. 2014, 53, 11158–11171; Angew. Chem. 2014, 126, 11338–11352;
- 6bL. Yang, C. Adam, S. L. Cockroft, J. Am. Chem. Soc. 2015, 137, 10084–10087.
- 7M. Whitehead, S. Turega, A. Stephenson, C. A. Hunter, M. D. Ward, Chem. Sci. 2013, 4, 2744–2751.
- 8For strong binding of charge-neutral guests by a cofacial porphyrin dimeric coordination capsule in mixed dichloromethane/methanol, see T. Nakamura, H. Ube, M. Shionoya, Angew. Chem. Int. Ed. 2013, 52, 12096–12100; Angew. Chem. 2013, 125, 12318–12322.
- 9For other exampes of maximizing non-covalent interactions in non-polar solvents, see
- 9aS. L. Cockroft, C. A. Hunter, Chem. Commun. 2006, 3806–3808;
- 9bG. M. Prentice, S. I. Pascu, S. V. Filip, K. R. West, G. D. Pantoş, Chem. Commun. 2015, 51, 8265–8268.
- 10
- 10aP. Liao, B. W. Langloss, A. M. Johnson, E. R. Knudsen, F. S. Tham, R. R. Julian, R. J. Hooley, Chem. Commun. 2010, 46, 4932–4934; For cisplatin guest binding in a structurally similar Pd2L4 cage sytem, see
- 10bJ. E. M. Lewis, E. L. Gavey, S. A. Cameron, J. D. Crowley, Chem. Sci. 2012, 3, 778–784; For recent reviews on Pd2L4 capsules, see
- 10cM. Han, D. M. Engelhard, G. H. Clever, Chem. Soc. Rev. 2014, 43, 1848–1860;
- 10dA. Schmidt, A. Casini, F. E. Kühn, Coord. Chem. Rev. 2014, 275, 19–36.
- 11For examples of metal ion polarised CH H-bonding, see
- 11aA. J. Metherell, W. Cullen, A. Stephenson, C. A. Hunter, M. D. Ward, Dalton Trans. 2014, 43, 71–84; For examples of similar host-guest interactions in coordination cages, see Refs. [4a, 5a, 8].
- 12For recent examples of organocatalysis uisng cationic H-bond donors that employ weakly coordinating anions, see
- 12aW. Xu, M. Arieno, H. Löw, K. Huang, X. Xie, T. Cruchter, Q. Ma, J. Xi, B. Huang, O. Wiest, L. Gong, E. Meggers, J. Am. Chem. Soc. 2016, 138, 8774–8780;
- 12bY. Fan, S. R. Kass, Org. Lett. 2016, 18, 188–191;
- 12cS. Shirakawa, S. Liu, S. Kaneko, Y. Kumatabara, A. Fukuda, Y. Omagari, K. Maruoka, Angew. Chem. Int. Ed. 2015, 54, 15767–15770; Angew. Chem. 2015, 127, 15993–15996.
- 13For anions such as OTf and BF4, it is likely that strong coulombic attraction is supplemented by a well defined secondary coordination sphere that involves mutiple o-pyridyl CH⋅⋅⋅O or CH⋅⋅⋅F H-bonds. For the X-ray structure of a similar primary and secondary coordination sphere, see
- 13aC. Bianchini, J. Filippi, A. Lavacchi, W. Oberhauser, Eur. J. Inorg. Chem. 2011, 1797–1805. With 1⋅4 OTf and 1⋅4 BF4, it is anticipated that, in solution, two anions interact with the external o-pyridyl pockets (noticeable shifts of Hb in the 1H NMR spectra are observed, Figure S27), however, it is suspected that both the coulombic repulsion and size limitation of the capsules cavity means that only one of the internal o-pyrdyl sites is occupied at any one time. Similar anion binding within capsules has been observed in the solid state, see Ref. [9a] and also,
- 13bJ. E. M. Lewis, J. D. Crowley, Supramol. Chem. 2014, 26, 173–181.
- 14While the errors associated with binding constants determined by competitive titration experiments are likely to be greater than 10 %, such uncertainty is offset by the significant difference in Ka values, see Figure S38.
- 15At concentrations less than 50 μm, 14+ starts to disassemble, see Figure S33.
- 16A slightly larger increase in the binding strength is observed between the first and second additional benzo groups (9 vs. 12 kJ mol−1), possibly indicating that for G2 there is free rotation of the guest in the cavity around the C2 axis that connects both CO groups. With G1 the additional CH-π interactions would be partially offset by the loss in entropy caused by the lack of rotation for this larger guest, hence the subsequent difference between G1 and G3 is larger.
- 17CCDC 1492902 [G4⊂1]4 OTf contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 18H. Adams, F. J. Carver, C. A. Hunter, N. J. Osborne, Chem. Commun. 1996, 2529–2530.
- 19While small changes to the 1H NMR signals of 14+ signals were observed upon titration with G9, attempts to fit this data to a 1:1 binding model gave a meaningless Ka value (0.1±96 m−1). We attribute the small changes to other possible, weak binding modes, such as interactions with the exteral o-pyridyl H-bond donors.
- 20
- 20aK. Ono, J. K. Klosterman, M. Yoshizawa, K. Sekiguchi, T. Tahara, M. Fujita, J. Am. Chem. Soc. 2009, 131, 12526–12527;
- 20bP. P. Neelakandan, A. Jiménez, J. R. Nitschke, Chem. Sci. 2014, 5, 908–915;
- 20cM. Yamashina, M. M. Sartin, Y. Sei, M. Akita, S. Takeuchi, T. Tahara, M. Yoshizawa, J. Am. Chem. Soc. 2015, 137, 9266–9269.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.