Extremely Active Organocatalysts Enable a Highly Enantioselective Addition of Allyltrimethylsilane to Aldehydes
Philip S. J. Kaib
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorLucas Schreyer
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorDr. Sunggi Lee
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorDr. Roberta Properzi
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Benjamin List
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorPhilip S. J. Kaib
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorLucas Schreyer
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorDr. Sunggi Lee
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorDr. Roberta Properzi
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Benjamin List
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
Search for more papers by this authorAbstract
The enantioselective allylation of aldehydes to form homoallylic alcohols is one of the most frequently used carbon–carbon bond-forming reaction in chemical synthesis and, for several decades, has been a testing ground for new asymmetric methodology. However, a general and highly enantioselective catalytic addition of the inexpensive, nontoxic, air- and moisture-stable allyltrimethylsilane to aldehydes, the Hosomi–Sakurai1 reaction, has remained elusive.2, 3 Reported herein is the design and synthesis of a highly acidic imidodiphosphorimidate motif (IDPi), which enables this transformation, thus converting various aldehydes with aromatic and aliphatic groups at catalyst loadings ranging from 0.05 to 2.0 mol % with excellent enantioselectivities. Our rationally constructed catalysts feature a highly tunable active site, and selectively process small substrates, thus promising utility in various other challenging chemical reactions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201607828-sup-0001-misc_information.pdf4.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Hosomi, H. Sakurai, Tetrahedron Lett. 1976, 17, 1295–1298.
- 2D. R. Gauthier, E. M. Carreira, Angew. Chem. Int. Ed. Engl. 1996, 35, 2363–2365; Angew. Chem. 1996, 108, 2521–2523.
- 3
- 3aS. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763–2794;
- 3bM. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev. 2011, 111, 7774–7854;
- 3cM. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev. 2013, 113, 5595–5698.
- 4T. Herold, R. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 1978, 17, 768–769; Angew. Chem. 1978, 90, 822–823.
- 5H. C. Brown, P. K. Jadhav, J. Am. Chem. Soc. 1983, 105, 2092–2093.
- 6W. R. Roush, A. E. Walts, L. K. Hoong, J. Am. Chem. Soc. 1985, 107, 8186–8190.
- 7A. Hafner, R. O. Duthaler, R. Marti, P. Rihs, G. Rothe-Streit, F. Schwarzenbach, J. Am. Chem. Soc. 1992, 114, 2321–2336.
- 8W. A. Chalifoux, S. K. Reznik, J. L. Leighton, Nature 2012, 487, 86–89.
- 9P. Jain, J. C. Antilla, J. Am. Chem. Soc. 2010, 132, 11884–11886.
- 10D. L. Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M. L. Snapper, F. Haeffner, A. H. Hoveyda, Nature 2013, 494, 216–221.
- 11S. Aoki, K. Mikami, M. Terada, T. Nakai, Tetrahedron 1993, 49, 1783–1792.
- 12G. E. Keck, K. H. Tarbet, L. S. Geraci, J. Am. Chem. Soc. 1993, 115, 8467–8468.
- 13A. L. Costa, M. G. Piazza, E. Tagliavini, C. Trombini, A. Umani-Ronchi, J. Am. Chem. Soc. 1993, 115, 7001–7002.
- 14A. Fürstner, N. Shi, J. Am. Chem. Soc. 1996, 118, 12349–12357.
- 15A. Berkessel, D. Menche, C. A. Sklorz, M. Schröder, I. Paterson, Angew. Chem. Int. Ed. 2003, 42, 1032–1035; Angew. Chem. 2003, 115, 1062–1065.
- 16I. S. Kim, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2008, 130, 14891–14899.
- 17S. E. Denmark, J. Fu, J. Am. Chem. Soc. 2001, 123, 9488–9489.
- 18Y. Huang, L. Yang, P. Shao, Y. Zhao, Chem. Sci. 2013, 4, 3275–3281.
- 19T. James, M. van Gemmeren, B. List, Chem. Rev. 2015, 115, 9388–9409.
- 20K. Ishihara, M. Mouri, Q. Gao, T. Maruyama, K. Furuta, H. Yamamoto, J. Am. Chem. Soc. 1993, 115, 11490–11495.
- 21Y. N. Belokon, D. Chusov, D. A. Borkin, L. V. Yashkina, P. Bolotov, T. Skrupskaya, M. North, Tetrahedron: Asymmetry 2008, 19, 459–466.
- 22H. Mayr, M. Patz, Angew. Chem. Int. Ed. Engl. 1994, 33, 938–957; Angew. Chem. 1994, 106, 990–1010.
- 23T. K. Hollis, B. Bosnich, J. Am. Chem. Soc. 1995, 117, 4570–4581.
- 24T. Gatzenmeier, M. van Gemmeren, Y. Xie, D. Höfler, M. Leutzsch, B. List, Science 2016, 351, 949–952.
- 25E. M. Carreira, R. A. Singer, Tetrahedron Lett. 1994, 35, 4323–4326.
- 26M. Mahlau, B. List, Angew. Chem. Int. Ed. 2013, 52, 518–533; Angew. Chem. 2013, 125, 540–556.
- 27M. Sai, H. Yamamoto, J. Am. Chem. Soc. 2015, 137, 7091–7094.
- 28
- 28aI. Čorić, B. List, Nature 2012, 483, 315–319;
- 28bS. Das, L. Liu, Y. Zheng, M. W. Alachraf, W. Thiel, C. K. De, B. List, J. Am. Chem. Soc. 2016, 138, 9429–9432;
- 28cL. Liu, P. S. J. Kaib, A. Tap, B. List, J. Am. Chem. Soc. 2016, 138, 10822–10825.
- 29M. Mahlau, P. García-García, B. List, Chem. Eur. J. 2012, 18, 16283–16287.
- 30P. S. J. Kaib, B. List, Synlett 2016, 156–158.
- 31H. W. Roesky, G. Holtschneider, H. H. Giere, Z. Naturforsch. B 1970, 25, 252–254.
- 32O. A. Radchenko, V. P. Nazaretyan, L. M. Yagupol'skii, Zh. Obshch. Khim. 1976, 46, 565–568.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.