Halide–Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape
Kyungnam Kim
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
These authors contributed equally to this work.
Search for more papers by this authorDongsuk Yoo
Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
These authors contributed equally to this work.
Search for more papers by this authorHyekyoung Choi
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
Department of Nanomechatronics, Korea University of Science and Technology (UST), Daejeon, 34113 Korea
These authors contributed equally to this work.
Search for more papers by this authorDr. Sudarsan Tamang
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
Search for more papers by this authorJae-Hyeon Ko
Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
Search for more papers by this authorSungwoo Kim
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
Search for more papers by this authorCorresponding Author
Prof. Yong-Hyun Kim
Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
Search for more papers by this authorCorresponding Author
Prof. Sohee Jeong
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
Department of Nanomechatronics, Korea University of Science and Technology (UST), Daejeon, 34113 Korea
Search for more papers by this authorKyungnam Kim
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
These authors contributed equally to this work.
Search for more papers by this authorDongsuk Yoo
Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
These authors contributed equally to this work.
Search for more papers by this authorHyekyoung Choi
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
Department of Nanomechatronics, Korea University of Science and Technology (UST), Daejeon, 34113 Korea
These authors contributed equally to this work.
Search for more papers by this authorDr. Sudarsan Tamang
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
Search for more papers by this authorJae-Hyeon Ko
Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
Search for more papers by this authorSungwoo Kim
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
Search for more papers by this authorCorresponding Author
Prof. Yong-Hyun Kim
Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
Search for more papers by this authorCorresponding Author
Prof. Sohee Jeong
Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon, 34103 Korea
Department of Nanomechatronics, Korea University of Science and Technology (UST), Daejeon, 34113 Korea
Search for more papers by this authorAbstract
Wet chemical synthesis of covalent III-V colloidal quantum dots (CQDs) has been challenging because of uncontrolled surfaces and a poor understanding of surface–ligand interactions. We report a simple acid-free approach to synthesize highly crystalline indium phosphide CQDs in the unique tetrahedral shape by using tris(dimethylamino) phosphine and indium trichloride as the phosphorus and indium precursors, dissolved in oleylamine. Our chemical analyses indicate that both the oleylamine and chloride ligands participate in the stabilization of tetrahedral-shaped InP CQDs covered with cation-rich (111) facets. Based on density functional theory calculations, we propose that fractional dangling electrons of the In-rich (111) surface could be completely passivated by three halide and one primary amine ligands per the (2×2) surface unit, satisfying the 8-electron rule. This halide–amine co-passivation strategy will benefit the synthesis of stable III-V CQDs with controlled surfaces.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201600289-sup-0001-misc_information.pdf3.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706–8715;
- 1bC. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545–610;
- 1cM. A. Hines, G. D. Scholes, Adv. Mater. 2003, 15, 1844–1849;
- 1dR. Costi, A. E. Saunders, U. Banin, Angew. Chem. Int. Ed. 2010, 49, 4878–4897; Angew. Chem. 2010, 122, 4996–5016.
- 2
- 2aH. Choi, J.-H. Ko, Y.-H. Kim, S. Jeong, J. Am. Chem. Soc. 2013, 135, 5278–5281;
- 2bJ. Y. Woo, J.-H. Ko, J. H. Song, K. Kim, H. Choi, Y.-H. Kim, D. C. Lee, S. Jeong, J. Am. Chem. Soc. 2014, 136, 8883–8886.
- 3Y.-H. Kim, M. J. Heben, S. B. Zhang, Phys. Rev. Lett. 2004, 92, 176102.
- 4
- 4aD. Franke, D. K. Harris, L. Xie, K. F. Jensen, M. G. Bawendi, Angew. Chem. Int. Ed. 2015, 54, 14299–14303; Angew. Chem. 2015, 127, 14507–14511;
- 4bS. Joung, S. Yoon, C.-S. Han, Y. Kim, S. Jeong, Nanoscale Res. Lett. 2012, 7, 1–8;
- 4cD. K. Harris, M. G. Bawendi, J. Am. Chem. Soc. 2012, 134, 20211–20213;
- 4dD. C. Gary, B. A. Glassy, B. M. Cossairt, Chem. Mater. 2014, 26, 1734–1744;
- 4eD. C. Gary, M. W. Terban, S. J. L. Billinge, B. M. Cossairt, Chem. Mater. 2015, 27, 1432–1441.
- 5
- 5aO. I. Mićić, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, A. J. Nozik, J. Phys. Chem. B 1997, 101, 4904–4912;
- 5bL. Li, M. Protière, P. Reiss, Chem. Mater. 2008, 20, 2621–2623;
- 5cX. Wang, L. Qu, J. Zhang, X. Peng, M. Xiao, Nano Lett. 2003, 3, 1103–1106.
- 6R. L. Wells, A. T. McPhail, L. J. Jones, M. F. Self, Polyhedron 1993, 12, 141–147.
- 7
- 7aK. Huang, R. Demadrille, M. G. Silly, F. Sirotti, P. Reiss, O. Renault, ACS Nano 2010, 4, 4799–4805;
- 7bH. Virieux, M. Troedec, A. Cros-Gagneux, W.-S. Ojo, F. Delpech, C. Nayral, H. Martinez, B. Chaudret, J. Am. Chem. Soc. 2012, 134, 19701–19708;
- 7cL. Xie, D. K. Harris, M. G. Bawendi, K. F. Jensen, Chem. Mater. 2015, 27, 5058–5063.
- 8
- 8aW.-S. Song, H.-S. Lee, J. C. Lee, D. S. Jang, Y. Choi, M. Choi, H. Yang, J. Nanopart. Res. 2013, 15, 1–10;
- 8bM. D. Tessier, D. Dupont, K. D. Nolf, R. D. Roo, Z. Hens, Chem. Mater. 2015, 27, 4893–4898.
- 9
- 9aK. Kim, C.-S. Han, S. Jeong, J. Mater. Chem. 2012, 22, 21370–21372;
- 9bE. Cho, H. Jang, J. Lee, E. Jang, Nanotechnology 2013, 24, 215201.
- 10W.-K. Li, S. M. Blinder, Chem. Phys. Lett. 2010, 496, 339–340.
- 11T. G. Kim, H. Choi, S. Jeong, J. W. Kim, J. Phys. Chem. C 2014, 118, 27884–27889.
- 12B. H. Freeland, J. J. Habeeb, D. G. Tuck, Can. J. Chem. 1977, 55, 1527–1532.
- 13J. F. Moulder, W. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Eden Prairie, 1995.
- 14M. Faur, M. Faur, D. T. Jayne, M. Goradia, C. Goradia, Surf. Interface Anal. 1990, 15, 641–650.
- 15J. H. Thomas, G. Kaganowicz, J. W. X. Robinson, J. Electrochem. Soc. 1988, 135, 1201–1206.
- 16Z. Hens, J. C. Martins, Chem. Mater. 2013, 25, 1211–1221.
- 17N. C. Anderson, M. P. Hendricks, J. J. Choi, J. S. Owen, J. Am. Chem. Soc. 2013, 135, 18536–18548.
- 18
- 18aS. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, S.-W. Kim, J. Am. Chem. Soc. 2012, 134, 3804–3809;
- 18bK. Kim, H. Lee, J. Ahn, S. Jeong, Appl. Phys. Lett. 2012, 101, 073107;
- 18cX. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir, X. W. Sun, Adv. Mater. 2012, 24, 4180–4185.
- 19
- 19aP. Reiss, M. Protière, L. Li, Small 2009, 5, 154–168;
- 19bS. Hussain, N. Won, H. Jin, H. Chung, S. Kim, ChemPhysChem 2009, 10, 1466–1470.
- 20S. Tamang, G. Beaune, I. Texier, P. Reiss, ACS Nano 2011, 5, 9392–9402.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.