Facile Synthesis and Properties of 2-λ5-Phosphaquinolines and 2-λ5-Phosphaquinolin-2-ones
Chris L. Vonnegut
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
These authors contributed equally to this work.
Search for more papers by this authorAirlia M. Shonkwiler
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
These authors contributed equally to this work.
Search for more papers by this authorMuhammad M. Khalifa
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
Search for more papers by this authorDr. Lev N. Zakharov
CAMCOR—Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, OR 97403-1443 (USA)
Search for more papers by this authorCorresponding Author
Prof. Darren W. Johnson
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)Search for more papers by this authorCorresponding Author
Prof. Michael M. Haley
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)Search for more papers by this authorChris L. Vonnegut
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
These authors contributed equally to this work.
Search for more papers by this authorAirlia M. Shonkwiler
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
These authors contributed equally to this work.
Search for more papers by this authorMuhammad M. Khalifa
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
Search for more papers by this authorDr. Lev N. Zakharov
CAMCOR—Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, OR 97403-1443 (USA)
Search for more papers by this authorCorresponding Author
Prof. Darren W. Johnson
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)Search for more papers by this authorCorresponding Author
Prof. Michael M. Haley
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)
Department of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253 (USA)Search for more papers by this authorAbstract
Treatment of 2-ethynylanilines with P(OPh)3 gives either 2,2-diphenoxy-2-λ5-phosphaquinolines or 2-phenoxy-2-λ5-phosphaquinolin-2-ones under transition-metal-free conditions. This reaction offers access to an underexplored heterocycle, which opens up the study of the fundamental nature of the NPV double bond and its potential for delocalization within a cyclic π-electron system. This heterocycle can serve as a carbostyril mimic, with application as a bioisostere for pharmaceuticals based on the 2-quinolinone scaffold. It also holds promise as a new fluorophore, since initial screening reveals quantum yields upwards of 40 %, Stokes shifts of 50–150 nm, and emission wavelengths of 380–540 nm. The phosphaquinolin-2-ones possess one of the strongest solution-state dimerization constants for a D–A system (130 M−1) owing to the close proximity of a strong acceptor (PO) and a strong donor (phosphonamidate NH), which suggests that they might hold promise as new hydrogen-bonding hosts for optoelectronic sensing.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201507696_sm_miscellaneous_information.pdf5.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Märkl, D. Matthes, Angew. Chem. Int. Ed. Engl. 1972, 11, 1019–1020; Angew. Chem. 1972, 84, 1069–1070.
- 2
- 2aG. Märkl, G. Dorfmeister, Tetrahedron Lett. 1987, 28, 1093–1096;
- 2bC. Bourdieu, A. Foucaud, Tetrahedron Lett. 1987, 28, 4673–4674.
- 3“Product Class 13: 1-λ3-Phosphinines”: F. Mathey, P. le Floch in Science of Synthesis, Vol. 15 (Ed.: ) Georg Thieme, Stuttgart, 2005, pp. 1097–1155.
- 4C. Bedel, A. Foucaud, Tetrahedron Lett. 1991, 32, 2619–2620.
- 5
- 5aM. J. S. Dewar, V. P. Kubba, J. Am. Chem. Soc. 1960, 82, 5685–5688;
- 5bI. G. M. Campbell, J. K. Way, J. Chem. Soc. 1960, 5034–5041;
- 5cI. G. M. Campbell, J. K. Way, J. Chem. Soc. 1961, 2133–2141.
- 6Examples include:
- 6aT. Kobayashi, M. Nitta, Chem. Lett. 1985, 14, 1459–1462;
- 6bN. G. Khusainova, Z. A. Bredikhina, A. D. Sinitsa, V. I. Kal′chenko, A. N. Pudovik, J. Gen. Chem. USSR Engl. Transl. 1982, 52, 789–795;
- 6cZ. A. Bredikhina, N. G. Khusainova, Y. Y. Efremov, R. L. Korshunov, A. N. Pudovik, J. Gen. Chem. USSR. Engl. Transl. 1985, 55, 1710–1718;
- 6dG. Veneziani, R. Reau, F. Dahan, G. Bertrand, J. Org. Chem. 1994, 59, 5927–5929;
- 6eA. Foucaud, C. Bedel, Tetrahedron 1995, 51, 9625–9632;
- 6fA. D. Averin, N. V. Lukashev, A. A. Borisenko, M. A. Kazankova, I. P. Beletskaya, Russ. J. Org. Chem. 1996, 32, 415–426;
- 6gM. Nitta, H. Yamamoto, T. Kobayashi, Heterocycles 1998, 48, 1903;
- 6hY. V. Svyaschenko, D. M. Volochnyuk, A. N. Kostyuk, Tetrahedron Lett. 2010, 51, 6316–6318;
- 6iD. Aguilar, R. Bielsa, T. Soler, E. P. Urriolabeitia, Organometallics 2011, 30, 642–648;
- 6jN. Avarvari, P. Le Floch, F. Mathey, J. Am. Chem. Soc. 1996, 118, 11978–11979.
- 7Examples include:
- 7aB. Dishon, J. Am. Chem. Soc. 1949, 71, 2251–2251;
- 7bM. J. S. Dewar, E. C. Lucken, M. A. Whitehead, J. Chem. Soc. 1960, 2423–2429;
- 7cL. Nyulászi, Chem. Rev. 2001, 101, 1229–1246;
- 7dA. B. Chaplin, J. A. Harrison, P. J. Dyson, Inorg. Chem. 2005, 44, 8407–8417;
- 7eJ. J. Torres-Vega, A. Vásquez-Espinal, J. Caballero, M. L. Valenzuela, L. Alvarez-Thon, E. Osorio, W. Tiznado, Inorg. Chem. 2014, 53, 3579–3585.
- 8
- 8aJ. H. Gladstone, J. D. Holmes, J. Chem. Soc. 1864, 17, 225–237;
10.1039/JS8641700225 Google Scholar
- 8bJ. Liebig, F. Woehler, Justus Liebigs Ann. Chem. 1834, 11, 139–150.
10.1002/jlac.18340110203 Google Scholar
- 9Carbostyril and isocarbostyril are the long-standing common names of 2(1H)-quinolinone and 1(2H)-isoquinolinone, respectively, and are still used frequently in the pharmacological and fluorophore literature.
- 10Examples include:
- 10aW. Tang, Y. X. Ding, J. Org. Chem. 2006, 71, 8489–8492;
- 10bW. Tang, Y. Ding, Y. X. Ding, Tetrahedron 2008, 64, 10507–10511;
- 10cJ. Yan, Q. Li, J. A. Boutin, M. P. Renard, Y. Ding, X. Hao, W. Zhao, M. Wang, Acta Pharmacol. Sin. 2008, 29, 752–758;
- 10dS. Park, B. Seo, S. Shin, J.-Y. Son, P. H. Lee, Chem. Commun. 2013, 49, 8671–8673;
- 10eD. Zhao, C. Nimphius, M. Lindale, F. Glorius, Org. Lett. 2013, 15, 4504–4507.
- 11Examples include:
- 11aJ. W. Darrow, D. G. Drueckhammer, Bioorg. Med. Chem. 1996, 4, 1341–1348;
- 11bD. J. Tantillo, K. N. Houk, J. Org. Chem. 1999, 64, 3066–3076;
- 11cV. Ferro, L. Weiler, S. G. Withers, H. Ziltener, Can. J. Chem. 1998, 76, 313–318;
- 11dH. Kakinuma, K. Shimazaki, N. Takahashi, K. Takahashi, S. Niihata, Y. Aoki, K. Hamada, H. Matsushita, Y. Nishi, Tetrahedron 1999, 55, 2559–2572;
- 11eM. Mikolajczyk, P. Balczewski in New Aspects in Phosphorus Chemistry II (Ed.: ), Springer, Berlin, 2003, pp. 161–214;
10.1007/3-540-46100-0_6 Google Scholar
- 11fA. Y. Peng, Y. X. Ding, J. Am. Chem. Soc. 2003, 125, 15006–15007;
- 11gB. Li, B. Zhou, H. Lu, L. Ma, A.-Y. Peng, Eur. J. Med. Chem. 2010, 45, 1955–1963;
- 11hJ. W. McGrath, J. P. Chin, J. P. Quinn, Nat. Rev. Microbiol. 2013, 11, 412–419;
- 11iJ. J. Shie, J.-M. Fang, J. Chin. Chem. Soc. 2014, 61, 127–141.
- 12Examples include:
- 12aC. Y. Hong, S. H. Kim, Y. K. Kim, Bioorg. Med. Chem. Lett. 1997, 7, 1875–1878;
- 12bY. Oshiro, S. Sato, N. Kurahashi, T. Tanaka, T. Kikuchi, K. Tottori, Y. Uwahodo, T. Nishi, J. Med. Chem. 1998, 41, 658–667;
- 12cT. S. Harrison, C. M. Perry, Drugs 2004, 64, 1715–1736;
- 12dS. Heeb, M. P. Fletcher, S. R. Chhabra, S. P. Diggle, P. Williams, M. Cámara, FEMS Microbiol. Rev. 2011, 35, 247–274;
- 12eG. A. Lemieux, J. Liu, N. Mayer, R. J. Bainton, K. Ashrafi, Z. Werb, Nat. Chem. Biol. 2011, 7, 206–213.
- 13S. Bhagat, A. K. Chakraborti, J. Org. Chem. 2007, 72, 1263–1270.
- 14E. Saxon, C. R. Bertozzi, Science 2000, 287, 2007–2010.
- 15Crystallographic data for 10 j: C25H19N2O2P, M=410.39, 0.17×0.16×0.12 mm, T=173(2) K, Monoclinic, space group P21/c, a=11.0967(14) Å, b=9.6020(13) Å, c=19.319(2) Å, β=90.982(4)°, V=2058.2(5) Å3, Z=4, ρcald=1.324 Mg m−3, μ=0.158 mm−1, F(000)=856, 2 θmax=50.0°, 22128 reflections, 3633 independent reflections [Rint=0.0525], R1=0.0428, wR2=0.0921 and GOF=1.024 for 3633 reflections (347 parameters) with I>2 σ(I), R1=0.0763, wR2=0.1078 and GOF=1.024 for all reflections, max/min residual electron density +0.290/−0.311 e Å−3. Crystallographic Data for 11 j: C19H15N2O2P, M=334.30, 0.12×0.09×0.04 mm, T=223(2) K, Triclinic, space group P-1, a=8.4050(3) Å, b=10.5908(4) Å, c=20.2049(7) Å, α=103.100(2)°, β=94.314(3)°, γ=109.365(2)°, V=1630.36(11) Å3, Z=4, Z′=2, ρcald=1.362 Mg m−3, μ=1.607 mm−1, F(000)=696, 2 θmax=134.32°, 18 307 reflections, 5681 independent reflections [Rint=0.0529], R1=0.0544, wR2=0.1447 and GOF=1.050 for 5681 reflections (553 parameters) with I>2 σ(I), R1=0.0738, wR2=0.1576 and GOF=1.050 for all reflections, max/min residual electron density +0.742/−0.441 e Å−3. CCDC 1416795 and 1416794 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 16W. C. Marsh, J. Trotter, J. Chem. Soc. A 1971, 169–173.
- 17M. Ikbal, R. Banerjee, S. Atta, A. Jana, D. Dhara, A. Anoop, N. D. P. Singh, Chem. Eur. J. 2012, 18, 11968–11975.
- 18R. Hirschmann, K. M. Yager, C. M. Taylor, J. Witherington, P. A. Sprengeler, B. W. Phillips, W. Moore, A. B. Smith, J. Am. Chem. Soc. 1997, 119, 8177–8190.
- 19S. E. Krikorian, J. Phys. Chem. 1982, 86, 1875–1881.
- 20W. L. Jorgensen, J. Pranata, J. Am. Chem. Soc. 1990, 112, 2008–2010.
- 21J. Sartorius, H.-J. Schneider, Chem. Eur. J. 1996, 2, 1446–1452.
- 22W. M. F. Fabian, K. S. Niederreiter, G. Uray, W. Stadlbauer, J. Mol. Struct. 1999, 477, 209–220.
- 23J. F. Araneda, W. E. Piers, B. Heyne, M. Parvez, R. McDonald, Angew. Chem. Int. Ed. 2011, 50, 12214–12217; Angew. Chem. 2011, 123, 12422–12425.
- 24G. Uray, K. S. Niederreiter, F. Belaj, W. M. F. Fabian, Helv. Chim. Acta 1999, 82, 1408–1417.
10.1002/(SICI)1522-2675(19990908)82:9<1408::AID-HLCA1408>3.0.CO;2-Q CAS Web of Science® Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.