Constructing 3D Branched Nanowire Coated Macroporous Metal Oxide Electrodes with Homogeneous or Heterogeneous Compositions for Efficient Solar Cells†
Wu-Qiang Wu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorYang-Fan Xu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorHua-Shang Rao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorHao-Lin Feng
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorProf. Dr. Cheng-Yong Su
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dai-Bin Kuang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)===Search for more papers by this authorWu-Qiang Wu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorYang-Fan Xu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorHua-Shang Rao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorHao-Lin Feng
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorProf. Dr. Cheng-Yong Su
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Dai-Bin Kuang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (P.R. China)===Search for more papers by this authorWe acknowledge financial support from the National Natural Science Foundation of China (U0934003, J1103305), the Program for New Century Excellent Talents in University (NCET-11-0533), the Fundamental Research Funds for the Central Universities, and the NSF of Guangdong Province (S2013030013474).
Abstract
Light-harvesting and charge collection have attracted increasing attention in the domain of photovoltaic cells, and can be facilitated dramatically by appropriate design of a photonic nanostructure. However, the applicability of current light-harvesting photoanode materials with single component and/or morphology (such as, particles, spheres, wires, sheets) is still limited by drawbacks such as insufficient electron–hole separation and/or light-trapping. Herein, we introduce a universal method to prepare hierarchical assembly of macroporous material–nanowire coated homogenous or heterogeneous metal oxide composite electrodes (TiO2–TiO2, SnO2–TiO2, and Zn2SnO4–TiO2; homogenous refers to a material in which the nanowire and the macroporous material have the same composition, i.e. both are TiO2. Heterogeneous refers to a material in which the nanowires and the macroporous material have different compositions). The dye-sensitized solar cell based on a TiO2-macroporous material–TiO2-nanowire homogenous composition electrode shows an impressive conversion efficiency of 9.51 %, which is much higher than that of pure macroporous material-based photoelectrodes to date.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201402371_sm_miscellaneous_information.pdf2.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. O’Regan, M. Grätzel, Nature 1991, 353, 737–740;
- 1bF. Di Fonzo, F. Sauvage, A. L. Bassi, C. S. Casari, V. Russo, G. Divitini, C. Ducati, C. E. Bottani, P. Comte, M. Grätzel, Nano Lett. 2010, 10, 2562–2567;
- 1cQ. F. Zhang, G. Z. Cao, Nano Today 2011, 6, 91–109.
- 2
- 2aS.-H. Han, S. Lee, H. Shin, H. S. Jung, Adv. Energy Mater. 2011, 1, 546–550;
- 2bS. I. Matsushita, N. Fukuda, M. Shimomura, Colloids Surf. A 2005, 257–258, 15–17.
- 3
- 3aS. C. Yang, D. J. Yang, J. Kim, J. M. Hong, H. G. Kim, I. D. Kim, H. Lee, Adv. Mater. 2008, 20, 1059–1064;
- 3bJ. F. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. L. Cao, X. P. Ai, H. X. Yang, Adv. Mater. 2009, 21, 3663–3667;
- 3cK. N. Li, Y. F. Wang, Y. F. Xu, H. Y. Chen, C. Y. Su, D. B. Kuang, ACS Appl. Mater. Interfaces 2013, 5, 5105–5111;
- 3dY. F. Wang, K. N. Li, Y. F. Xu, H. S. Rao, C. Y. Su, D. B. Kuang, Nanoscale 2013, 5, 5940–5948;
- 3eZ. H. Dong, X. Y. Lai, J. E. Halpert, N. L. Yang, L. X. Yi, J. Zhai, D. Wang, Z. Y. Tang, L. Jiang, Adv. Mater. 2012, 24, 1046–1049;
- 3fJ. Du, J. Qi, D. Wang, Z. Tang, Energy Environ. Sci. 2012, 5, 6914–6918.
- 4
- 4aD. B. Kuang, T. Brezesinski, B. Smarsly, J. Am. Chem. Soc. 2004, 126, 10534–10535;
- 4bW. Fan, M. A. Snyder, S. Kumar, P. S. Lee, W. C. Yoo, A. V. McCormick, R. L. Penn, A. Stein, M. Tsapatsis, Nat. Mater. 2008, 7, 984–991;
- 4cN. Tétreault, E. Arsenault, L. P. Heiniger, N. Soheilnia, J. Brillet, T. Moehl, S. Zakeeruddin, G. A. Ozin, M. Grätzel, Nano Lett. 2011, 11, 4579–4584;
- 4dB. Mandlmeier, J. M. Szeifert, D. Fattakhova-Rohlfing, H. Amenitsch, T. Bein, J. Am. Chem. Soc. 2011, 133, 17274–17282.
- 5
- 5aH. C. Pang, H. B. Yang, C. X. Guo, J. L. Lu, C. M. Li, Chem. Commun. 2012, 48, 8832–8834;
- 5bX. Y. Lai, J. E. Halpert, D. Wang, Energy Environ. Sci. 2012, 5, 9944–9944.
- 6
- 6aM. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nat. Mater. 2005, 4, 455–459;
- 6bL. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, M. L. Brongersma, Nat. Mater. 2009, 8, 643–647;
- 6cB. Weintraub, Y. Wei, Z. L. Wang, Angew. Chem. 2009, 121, 9143–9147;
10.1002/ange.200904492 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 8981–8985;
- 6dW. Q. Wu, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, D. B. Kuang, Sci. Rep. 2013, 3, 1892;
- 6eY. G. Wei, C. Xu, S. Xu, C. Li, W. Z. Wu, Z. L. Wang, Nano Lett. 2010, 10, 2092–2096;
- 6fW. Q. Wu, Y. F. Xu, C. Y. Su, D. B. Kuang, Energy Environ. Sci. 2014, 7, 644–649;
- 6gJ. Y. Liao, B. X. Lei, H. Y. Chen, D. B. Kuang, C. Y. Su, Energy Environ. Sci. 2012, 5, 5750–5757.
- 7S. K. Karuturi, J. S. Luo, C. W. Cheng, L. J. Liu, L. T. Su, A. I. Y. Tok, H. J. Fan, Adv. Mater. 2012, 24, 4157–4162.
- 8
- 8aA. Kay, M. Grätzel, Chem. Mater. 2002, 14, 2930–2935;
- 8bY. C. Qiu, W. Chen, S. H. Yang, Angew. Chem. 2010, 122, 3757–3761; Angew. Chem. Int. Ed. 2010, 49, 3675–3679.
- 9
- 9aE. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, J. Am. Chem. Soc. 2003, 125, 475–482;
- 9bS. Ito, P. Liska, P. Comte, R. L. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grätzel, Chem. Commun. 2005, 4351–4353.
- 10
- 10aT. Chen, W. H. Hu, J. L. Song, G. H. Guai, C. M. Li, Adv. Carbohydr. Anal. 2012, 22, 5245–5250;
- 10bC. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, Angew. Chem. 2010, 122, 3078–3081; Angew. Chem. Int. Ed. 2010, 49, 3014–3017.
- 11W. Q. Wu, B. X. Lei, H. S. Rao, Y. F. Xu, Y. F. Wang, C. Y. Su, D. B. Kuang, Sci. Rep. 2013, 3, 1352.
- 12J. van de Lagemaat, N. G. Park, A. J. Frank, J. Phys. Chem. B 2000, 104, 2044–2052.
- 13
- 13aH. J. Snaith, C. Ducati, Nano Lett. 2010, 10, 1259–1265;
- 13bA. B. F. Martinson, J. W. Elam, J. Liu, M. J. Pellin, T. J. Marks, J. T. Hupp, Nano Lett. 2008, 8, 2862–2866.
- 14I. Abayev, A. Zaban, F. Fabregat-Santiago, J. Phys. Status Solidi A 2003, 196, R 4–R6.
- 15T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan, X. Wu, J. Vac. Sci. Technol. A 2000, 18, 2646–2660.
- 16J. W. Goodwin, J. Hearn, C. C. Ho, R. H. Ottcwill, Colloid Polym. Sci. 1974, 252, 464–471.
- 17W. Q. Wu, Y. F. Xu, H. S. Rao, C. Y. Su, D. B. Kuang, Nanoscale 2013, 5, 4362–4369.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.