Treatment of CrVI-Containing Mg(OH)2 Nanowaste†
Weizhen Liu
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorFeng Huang Prof.
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorYiqun Liao
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorJing Zhang
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorGuoqiang Ren
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorZangyong Zhuang
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorJinsheng Zhen
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorZhang Lin Prof.
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorChen Wang Prof.
National Center for NanoScience and Technology, Beijing 100080 (China)
Search for more papers by this authorWeizhen Liu
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorFeng Huang Prof.
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorYiqun Liao
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorJing Zhang
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorGuoqiang Ren
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorZangyong Zhuang
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorJinsheng Zhen
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorZhang Lin Prof.
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China), Fax: (+086) 591-8370-5474
Search for more papers by this authorChen Wang Prof.
National Center for NanoScience and Technology, Beijing 100080 (China)
Search for more papers by this authorWe thank Zhong He and colleagues at the Fujian chlorate plant for their help with the industrial pilot-scale tests. We also thank Prof. Guibing Jiang and Prof. Yadong Li for helpful discussions. Financial support for this study was provided by the CAS Foundation (KJCX1.YW.07), NNSF of China (20501020, 40772034), 973 program (2007CB815601), the Special Project on Science and Technology of Fujian Province (2005YZ1026), and the Environmental Science Foundation of Fujian Province (2007-43). F. Huang acknowledges financial support from the Outstanding Youth Fund (50625205).
Graphical Abstract
Sauber getrennt: Die Behandlung nanometergroßer, CrVI-haltiger Mg(OH)2-Abfallpartikel mit dem Mineralisator NaHCO3+Na2CO3 überführt diesen nanoskaligen Abfall in ein nichttoxisches Volumenmaterial und eine konzentrierte Lösung des Schwermetalls. Der Prozess verläuft über zwei Stufen: Zunächst erfolgt eine Desorption von CrVI, der sich ein schnelles Wachstum von Nanokristallen bis zur vollständigen Trennung von den CrVI-Ionen anschließt (siehe Bild).
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2001/2008/z800172_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Bag, P. N. Trikalitis, P. J. Chupas, G. S. Armatas, M. G. Kanatzidis, Science 2007, 317, 490–493;
- 1bA. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, P. M. Ajayan, Nat. Mater. 2004, 3, 610–614;
- 1cS. R. Kanel, B. Manning, L. Charlet, H. Choi, Environ. Sci. Technol. 2005, 39, 1291–1298.
- 2Nanowaste refers to industrial sludge containing nanoparticles.
- 3Mg(OH)2 nanomaterial is normally generated in the brine purification step of the sea-salt raw material used in the chlor-alkali and chlorate industries[4] where NaOH and Na2CO3 are introduced to remove the Mg2+ and Ca2+ impurities.[5] The sludge generated contains a significant amount of 20-nm Mg(OH)2 nanoparticles, which can adsorb the CrVI that is added intentionally to maintain the current efficiency during the electrolysis of NaCl.
- 4J. A. Kent, Riegel's Handbook of Industrial Chemistry, Springer US, New York, 2003, pp. 429–430.
10.1007/0-387-23816-6_12 Google Scholar
- 5N. P. Cheremisinoff, Handbook of Solid Waste Management and Waste Minimization Technologies, Elsevier, Burlington, 2003, pp. 192–193.
- 6K. Kannan, T. Imagawa, A. Blankenship, J. Giesy, Environ. Sci. Technol. 1998, 32, 2507–2514.
- 7
- 7aK. Viswanathan, B. V. Tilak, J. Electrochem. Soc. 1984, 131, 1551–1559;
- 7bG. Lindbergh, D. Simonsson, Electrochim. Acta 1991, 36, 1985–1994;
- 7cM. Li, Z. Twardowski, F. Mok, N. Tam, J. Appl. Electrochem. 2007, 37, 499–504.
- 8A. D. Dayan, A. J. Paine, Hum. Exp. Toxicol. 2001, 20, 439–451.
- 9
- 9aC. F. Lin, W. Rou, K. S. Lo, Water Sci. Technol. 1992, 26, 2301–2304;
- 9bC. D. Palmer, P. R. Wittbrodt, Environ. Health Perspect. 1991, 92, 25–40;
- 9cA. Agrawal, V. Kumar, B. D. Pandey, Miner. Process. Extr. Metall. Rev. 2006, 27, 99–130.
- 10
- 10aJ. Zhao, CN1799716A, 2007;
- 10bC. T. Li, W. J. Lee, K. L. Huang, S. F. Fu, Y. C. Lai, Environ. Sci. Technol. 2007, 41, 2950–2956.
- 11J. Zhang, Z. Lin, Y. Z. Lan, G. Q. Ren, D. G. Chen, F. Huang, M. C. Hong, J. Am. Chem. Soc. 2006, 128, 12981–12987.
- 12The initial pH of the nanowaste is around 9, which is less than the isoelectric point of Mg(OH)2 (approx. 11.9), therefore the Mg(OH)2 nanomaterial in the nanowaste is positively charged.
- 13F. Huang, J. F. Banfield, J. Am. Chem. Soc. 2005, 127, 4523–4529.
- 14The collective movement of atoms is a new phase-transformation kinetic model. This model proposes that once a nucleus is formed, the boundary of the new phase will propagate rapidly until a surface or another propagating phase front is encountered.[13]
- 15Na2Mg(CO3)2 is slightly soluble in mineralizer A solution (approx. 30 mg L−1). As shown in Figure 5 b, Na2Mg(CO3)2 can grow to 20 μm within 6 h, thus suggesting that the growth rate of Na2Mg(CO3)2 crystals must be of the order of several micrometers per hour. The solubility of a similar, slightly soluble material, for example ZnS, is around 750 mg L−1 in 4 M NaOH. The growth rate of ZnS in 4 M NaOH at 100 °C is only 0.02 nm h−1 via exclusive oriented attachment (OA) growth, or 0.0026 nm h−1 via Ostwald ripening (OR) growth.[11] The growth rate of Na2Mg(CO3)2 is therefore extremely high. Such a high rate is not likely to be possible by oriented attachment growth due to the relatively large grain size or by classical Ostwald ripening growth due to slow precipitation/dissolution at the particle/matrix interface.
- 16J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert, R. L. Penn, Science 2000, 289, 751–754.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.