Circular Dichroism of a Chiral Tethered Donor–Acceptor System: Enhanced Anisotropy Factors in Charge-Transfer Transitions by Dimer Formation and by Confinement†
Tadashi Mori Dr.
Department of Molecular Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan, Fax: (+81) 6-6879-7923
Search for more papers by this authorYoshihisa Inoue Prof. Dr.
The Entropy Control Project, ICORP, JST, 4-6-3 Kamishinden, Toyonaka 560-0085, Japan, Fax: (+81) 6-6836-1636
Search for more papers by this authorTadashi Mori Dr.
Department of Molecular Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan, Fax: (+81) 6-6879-7923
Search for more papers by this authorYoshihisa Inoue Prof. Dr.
The Entropy Control Project, ICORP, JST, 4-6-3 Kamishinden, Toyonaka 560-0085, Japan, Fax: (+81) 6-6836-1636
Search for more papers by this authorFinancial support of this work by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 16750034, to T.M.) is gratefully acknowledged.
Graphical Abstract
Gemeinsamkeit macht stark: Eine Charge-Transfer(CT)-Diade mit einem Trimethylen-Linker bildet je nach den Bedingungen ein intramolekular gefaltetes oder ein gestrecktes Monomer oder auch ein intermolekulares Dimer (siehe Bild). Sowohl die Dimerbildung bei niedriger Temperatur als auch der Einschluss des Monomers in den Hohlraum eines Cyclodextrins erhöhen den Anisotropiefaktor g des CT-Übergangs des Komplexes erheblich.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2001/2005/z462071_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Foster, Organic Charge-Transfer Complexes, Academic Press, New York, 1969;
- 1bR. S. Mulliken, W. B. Person, Molecular Complexes, Wiley, New York, 1969;
- 1cR. Foster, Molecular Complexes, Vol. 2, Crane, Russak, New York, 1974.
- 2
- 2aY.-H. Ko, K. Kim, J.-K. Kang, H. Chun, J. W. Lee, S. Sakamoto, K. Yamaguchi, J. C. Fettinger, K. Kim, J. Am. Chem. Soc. 2004, 126, 1932–1933;
- 2bJ. W. Lee, K. Kim, S. W. Choi, Y. H. Ko, S. Sakamoto, K. Yamaguchi, K. Kim, Chem. Commun. 2002, 2692–2693;
- 2cY. J. Jeon, P. K. Bharadwaj, S. W. Choi, J. W. Lee, K. Kim, Angew. Chem. 2002, 114, 4654–4656;
Angew. Chem. Int. Ed. 2002, 41, 4474–4476;
10.1002/1521-3773(20021202)41:23<4474::AID-ANIE4474>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 2dS. A. Vignon, J. Wong, H.-R. Tseng, J. F. Stoddart, Org. Lett. 2004, 6, 1095–1098.
- 3
- 3aT. P. Le, J. E. Rogers, L. A. Kelly, J. Phys. Chem. A 2000, 104, 6778–6785;
- 3bA. Siemiarczuk, A. R. McIntosh, T. F. Ho, M. J. Stillman, K. J. Roach, A. C. Weedon, J. R. Bolton, J. S. Connolly, J. Am. Chem. Soc. 1983, 105, 7224–7230;
- 3cE. A. Chandross, C. J. Dempster, J. Am. Chem. Soc. 1970, 92, 3586–3593;
- 3dM. Itoh, J. Am. Chem. Soc. 1972, 94, 1034–1035.
- 4
- 4aG. J. Simpson, ChemPhysChem 2004, 5, 1301–1310;
- 4bH. Okubo, D. Nakano, S. Anzai, M. Yamaguchi, J. Org. Chem. 2001, 66, 557–563.
- 5
- 5aG. Briegleb, H. G. Kuball, K. Henschel, W. Euing, Ber. Bunsen-Ges. Phys. Chem. 1972, 76, 101–105;
- 5bG. Briegleb, H. G. Kuball, K. Henschel, J. Physik. Chem. (Frankfurt) 1965, 46, 229–249;
G. Briegleb, H. G. Kuball, Angew. Chem. 1964, 76, 228–229;
Angew. Chem. Int. Ed. Engl. 1964, 3, 307–308; see also:
R. Gleiter, H. Hopf, Modern Cyclophane Chemistry, Wiley, New York, 2004.
10.1002/3527603964 Google Scholar
- 6
- 6aC. Sato, K. Kikuchi, K. Okamura, Y. Takahashi, T. Miyashi, J. Phys. Chem. 1995, 99, 16925–16931;
- 6bA. Zweig, A. H. Maurer, B. G. Robert, J. Org. Chem. 1967, 32, 1322–1329;
- 6cK. Y. Lee, J. K. Kochi, J. Chem. Soc. Perkin Trans. 2 1992, 1011–1017.
- 7
- 7aH. A. Benesi, J. J. Hildebrand, J. Am. Chem. Soc. 1949, 71, 2703–2707;
- 7bW. B. Person, J. Am. Chem. Soc. 1965, 87, 167–170.
- 8
- 8aJ. W. Verhoeven, I. P. Dirkx, T. J. de Boer, Tetrahedron 1969, 25, 3395–3405;
- 8bA. S. N. Murthy, A. P. Bhardwaj, Spectrochim. Acta 1983, 39A, 939–942.
- 9K. B. Yoon, J. K. Kochi, J. Phys. Chem. 1991, 95, 3780–3790.
- 10DFT calculations were performed to search for the optimized structure in the folded conformation, but no energy minimum was found. This result is not very unexpected and could be rationalized, as DFT calculations (in the gas phase) underestimate the electronic interaction between donor and acceptor units. However, there is yet another possibility: that it is not the conventional through-space, but through-bond interactions in an extended conformation that give rise to the CT absorption, for which no face-to-face conformation is required. Indeed, the CT transition induced by through-bond interactions was reported for rigid donor–acceptor systems:
- 10aJ. W. Verhoeven, Pure Appl. Chem. 1986, 58, 1285–1290;
- 10bA. J. De Gee, J. W. Verhoeven, W. J. Sep, T. J. De Boer, J. Chem. Soc. Perkin Trans. 2 1975, 579–583. However, we do not have any conclusive evidence at present.
- 11H. E. Smith, Chem. Rev. 1998, 98, 1709–1740.
- 12
- 12aJ. W. Park, B. A. Lee, S. Y. Lee, J. Phys. Chem. B 1998, 102, 8209–8215;
- 12bH. Yonemura, M. Kasahara, H. Saito, H. Nakamura, T. Matsuo, J. Phys. Chem. 1992, 96, 5765–5770;
- 12cH. Yonemura, H. Nakamura, T. Matsuo, Chem. Phys. Lett. 1989, 155, 157–161;
- 12dA. Toki, H. Yonemura, T. Matsuo, Bull. Chem. Soc. Jpn. 1993, 66, 3382–3386.
- 13
- 13aK. Harata, H. Uedaira, Bull. Chem. Soc. Jpn. 1975, 48, 375–378;
- 13bM. Kodaka, J. Phys. Chem. A 1998, 102, 8101–8103;
- 13cM. Kodaka, J. Am. Chem. Soc. 1993, 115, 3702–3705.
- 14
- 14aR. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265–322;
- 14bN. S. Hush, Coord. Chem. Rev. 1985, 64, 135–157;
- 14cN. S. Hush, Electrochim. Acta 1968, 13, 1005–1023;
- 14dN. S. Hush, Prog. Inorg. Chem. 1967, 8, 391–444;
- 14eN. S. Hush, Trans. Faraday Soc. 1961, 57, 557–580.
- 15We estimated the separation parameter r as 3.5 Å in the Hush equation from the molecular geometry on the basis of X-ray crystallographic and DFT-optimized structures of related charge-transfer complexes. However, an estimation of the value of r remains to be elucidated.
- 15aH. Yoshikawa, S. Nishikiori, T. Ishida, J. Phys. Chem. B 2003, 107, 9261–9267;
- 15bM.-S. Liao, Y. Lu, S. Scheiner, J. Comput. Chem. 2003, 24, 623–631.
- 16
- 16aFor a review, see: B. L. Feringa, R. A. van Delden, Angew. Chem. 1999, 111, 3624–3645;
10.1002/(SICI)1521-3757(19991203)111:23<3624::AID-ANGE3624>3.0.CO;2-X Web of Science® Google ScholarAngew. Chem. Int. Ed. 1999, 38, 3418–3438; see also:10.1002/(SICI)1521-3773(19991203)38:23<3418::AID-ANIE3418>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 16bH. Nishino, A. Kosaka, G. A. Hembury, F. Aoki, K. Miyauchi, H. Shitomi, H. Onuki, Y. Inoue, J. Am. Chem. Soc. 2002, 124, 11618–11627;
- 16cY. Inoue, H. Tsuneishi, T. Hakushi, K. Yagi, K. Awazu, H. Onuki, Chem. Commun. 1996, 2627–2628.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.