Unconventional Light-Matter Interactions Between Giant Atoms and Structured Baths with Next-Nearest-Neighbor Couplings
Correction(s) for this article
-
Correction to “Unconventional Light-Matter Interactions Between Giant Atoms and Structured Baths with Next-Nearest-Neighbor Coplings”
- Volume 536Issue 12Annalen der Physik
- First Published online: November 10, 2024
Pengfei Wang
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
Search for more papers by this authorLei Huang
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
Search for more papers by this authorHanxiao Zhang
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
The Innovation Platform for Academicians of Hainan Province, Haikou, 571158 P. R. China
Search for more papers by this authorHong Yang
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
The Innovation Platform for Academicians of Hainan Province, Haikou, 571158 P. R. China
Search for more papers by this authorCorresponding Author
Dong Yan
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
The Innovation Platform for Academicians of Hainan Province, Haikou, 571158 P. R. China
E-mail: [email protected]
Search for more papers by this authorPengfei Wang
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
Search for more papers by this authorLei Huang
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
Search for more papers by this authorHanxiao Zhang
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
The Innovation Platform for Academicians of Hainan Province, Haikou, 571158 P. R. China
Search for more papers by this authorHong Yang
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
The Innovation Platform for Academicians of Hainan Province, Haikou, 571158 P. R. China
Search for more papers by this authorCorresponding Author
Dong Yan
College of Physics and Electronic Engineering, Hainai Normal University, Haikou, 571158 P. R. China
The Innovation Platform for Academicians of Hainan Province, Haikou, 571158 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
In this paper, the unconventional light-matter interactions between giant atoms and structured baths (i.e., lattices) are studied with either Hermitian or non-Hermitian next-nearest-neighbor coupling terms. Essentially different dynamics of the atoms and the propagating field in the Hermitian and non-Hermitian cases is revealed, which can be further engineered by tuning parameters such as the atomic transition frequency and the (synthetic) magnetic field associated to the coupling terms. The next-nearest-neighbor couplings play an important role in controlling the emission direction and the field distribution in the lattice, thus providing opportunities for tailoring exotic dipole–dipole interactions. The results in this paper have potential applications in, e.g., engineering unconventional quantum networks and simulating quantum many-body systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1A. F. Kockum, in International Symposium on Mathematics, Quantum Theory, and Cryptography, (Eds.: T. Takagi, M. Wakayama, K. Tanaka, N. Kunihiro, K. Kimoto, Y. Ikematsu), Springer, Singapore 2021, pp. 125–146.
10.1007/978-981-15-5191-8_12 Google Scholar
- 2R. H. Dicke, Phys. Rev. 1954, 93, 99.
- 3A. F. Kockum, G. Johansson, F. Nori, Phys. Rev. Lett. 2018, 120, 140404.
- 4A. F. Kockum, P. Delsing, G. Johansson, Phys. Rev. A 2014, 90, 013837.
- 5X. Wang, T. Liu, A. F. Kockum, H.-R. Li, F. Nori, Phys. Rev. Lett. 2020, 126, 043602.
10.1103/PhysRevLett.126.043602 Google Scholar
- 6L. Guo, A. F. Kockum, F. Marquardt, G. Johansson, Phys. Rev. Res. 2020, 2, 043014.
- 7K. H. Lim, W.-K. Mok, L.-C. Kwek, Phys. Rev. A 2023, 107, 023716.
- 8W. Zhao, Z. Wang, Phys. Rev. A 2020, 101, 053855.
- 9L. Du, Y. Li, Phys. Rev. A 2021, 104, 023712.
- 10L. Du, Y.-T. Chen, Y. Li, Phys. Rev. Res. 2021, 3, 043226.
- 11Q. Y. Cai, W. Z. Jia, Phys. Rev. A 2021, 104, 033710.
- 12X.-L. Yin, Y.-H. Liu, J.-F. Huang, J.-Q. Liao, Phys. Rev. A 2022, 106, 013715.
- 13Y. T. Zhu, S. Xue, R. B. Wu, W. L. Li, Z. H. Peng, M. Jiang, Phys. Rev. A 2022, 106, 043710.
- 14Y.-T. Chen, L. Du, L. Guo, Z. Wang, Y. Zhang, Y. Li, J.-H. Wu, Commun. Physc. 2022, 5, 215.
10.1038/s42005-022-00991-3 Google Scholar
- 15J. Zhou, X.-L. Yin, J.-Q. Liao, Phys. Rev. A 2023, 107, 063703.
- 16B. Kannan, M. Ruckriegel, D. Campbell, A. F. Kockum, J. Braumüller, D. Kim, M. Kjaergaard, P. Krantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, W. D. Oliver, Nature (London) 2020, 583, 775.
- 17A. Carollo, D. Cilluffo, F. Ciccarello, Phys. Rev. Res. 2020, 2, 043184.
- 18L. Du, L. Guo, Y. Li, Phys. Rev. A 2023, 107, 023705.
- 19L. Du, L. Guo, Y. Zhang, A. F. Kockum, Phys. Rev. Res. 2023, 5, L042040.
- 20S. Longhi, Opt. Lett. 2020, 45, 3017.
- 21Y.-T. Chen, L. Du, Y. Zhang, L. Guo, J.-H. Wu, M. Artoni, G. C. La Rocca, Phys. Rev. Res. 2023, 5, 043135.
- 22L. Du, Y. Zhang, J.-H. Wu, A. F. Kockum, Y. Li, Phys. Rev. Lett. 2022, 128, 223602.
- 23H. Xiao, L. Wang, Z.-H. Li, X. Chen, L. Yuan, npj Quantum Inf. 2022, 8, 80.
10.1038/s41534-022-00591-7 Google Scholar
- 24A. González-Tudela, C. S. Muñoz, J. I. Cirac, Phys. Rev. Lett. 2019, 122, 203603.
- 25W. Cheng, Z. Wang, Y.-x. Liu, Phys. Rev. A 2022, 106, 033522.
- 26L. Du, Y.-T. Chen, Y. Zhang, Y. Li, J.-H. Wu, Quantum Sci. Technol. 2023, 8, 045010.
10.1088/2058-9565/ace54c Google Scholar
- 27L. Leonforte, X. Sun, D. Valenti, B. Spagnolo, F. Illuminati, A. Carollo, F. Ciccarello, arXiv preprint arXiv: 2402. 10275, 2024.
- 28E. R. Ingelsten, A. F. Kockum, A. Soro, arXiv preprint arXiv: 2402. 10879, 2024.
- 29C. Vega, M. Bello, D. Porras, A. González-Tudela, Phys. Rev. A 2021, 104, 053522.
- 30J.-Q. Li, Z.-M. Gao, W.-X. Liu, X. Wang, Phys. Rev. A 2023, 108, 043708.
- 31F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, Opt. Lett. 2008, 33, 2689.
- 32F. Dreisow, M. Heinrich, A. Szameit, S. Döring, S. Nolte, A. Tünnermann, S. Fahr, F. Lederer, Opt. Express 2008, 16, 3474.
- 33S. Puri, C. K. Andersen, A. L. Grimsmo, A. Blais, Nat. Commun. 2017, 8, 15785.
- 34T. Onodera, E. Ng, P. L. McMahon, npj Quantum Inf. 2020, 6, 48.
10.1038/s41534-020-0279-z Google Scholar
- 35P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J. O'Malley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, E. Kapit, H. Neven, J. Martinis, Nat. Phys. 2017, 13, 146.
- 36A. Clerk, SciPost Physics Lecture Notes 2022, 044.
10.21468/SciPostPhysLectNotes.44 Google Scholar
- 37L. Du, L. Guo, Y. Li, Phys. Rev. A 2023, 107, 023705.
- 38L. Jin, Z. Song, Phys. Rev. Lett. 2018, 121, 073901.
- 39K. Wang, A. can be given bytt, K. Y. Yang, C. C. Wojcik, J. Vučković, S. Fan, Science 2021, 371, 1240.
- 40S. Longhi, Phys. Rev. B 2017, 95, 014201.
- 41L. Du, Y. Zhang, J.-H. Wu, Sci. Rep. 2020, 10, 1113.
- 42A. Soro, C. S. Muñoz, A. F. Kockum, Phys. Rev. A 2023, 107, 013710.
- 43Q. Li, L. Zhou, C.-P. Sun, Phys. Rev. A 2014, 89, 063810.
10.1103/PhysRevA.89.063810 Google Scholar
- 44J.-F. Huang, T. Shi, C.-P. Sun, F. Nori, Phys. Rev. A 2013, 88, 013836.
- 45X. Wang, H. r. Li, Quantum Sci. Technol. 2022, 7, 035007.
- 46X. Wang, H.-R. Li, Quantum Sci, Technol. 2022, 7, 035007.
- 47P. Guimond, B. Vermersch, M. Juan, A. Sharafiev, G. Kirchmair, P. Zoller, npj Quantum Info. 2020, 6, 32.
10.1038/s41534-020-0261-9 Google Scholar
- 48A. Soro, A. F. Kockum, Phys. Rev. A 2022, 105, 023712.
- 49S. Longhi, Opt. Lett. 2021, 46, 2091.