Quantum Fourier Transform-Based Arithmetic Logic Unit on a Quantum Processor
Corresponding Author
Selçuk Çakmak
Department of Software Engineering, University of Samsun, Samsun, 55420 Türkiye
E-mail: [email protected]
Search for more papers by this authorMurat Kurt
Department of Physics, Ondokuz Mayıs University, Samsun, 55139 Türkiye
Search for more papers by this authorAzmi Gençten
Department of Physics, Ondokuz Mayıs University, Samsun, 55139 Türkiye
Search for more papers by this authorCorresponding Author
Selçuk Çakmak
Department of Software Engineering, University of Samsun, Samsun, 55420 Türkiye
E-mail: [email protected]
Search for more papers by this authorMurat Kurt
Department of Physics, Ondokuz Mayıs University, Samsun, 55139 Türkiye
Search for more papers by this authorAzmi Gençten
Department of Physics, Ondokuz Mayıs University, Samsun, 55139 Türkiye
Search for more papers by this authorAbstract
This study proposes and construct a primitive quantum arithmetic logic unit (qALU) based on the quantum Fourier transform (QFT). The qALU is capable of performing arithmetic ADD (addition) and logic NAND gate operations. It designs a scalable quantum circuit and presents the circuits for driving ADD and NAND operations on two-input and four-input quantum channels, respectively. By comparing the required number of quantum gates for serial and parallel architectures in executing arithmetic addition, it evaluates the performance. It also execute the proposed quantum Fourier transform-based qALU design on real quantum processor hardware provided by IBM. The results demonstrate that the proposed circuit can perform arithmetic and logic operations with a high success rate. Furthermore, it discusses in detail the potential implementations of the qALU circuit in the field of computer science, highlighting the possibility of constructing a soft-core processor on a quantum processing unit.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1J. Preskill, Quantum 2018, 2, 79.
- 2H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan, Science 2020, 370, 1460.
- 3P. Murali, A. Javadi-Abhari, F. T. Chong, M. Martonosi, Microprocess. Microsyst. 2019, 66, 102.
- 4P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, C. H. Alderete, IEEE Micro 2020, 40, 73.
- 5B. Cheng, X.-H. Deng, X. Gu, Y. He, G. Hu, P. Huang, J. Li, B.-C. Lin, D. Lu, Y. Lu, C. Qiu, H. Wang, T. Xin, S. Yu, M.-H. Yung, J. Zeng, S. Zhang, Y. Zhong, X. Peng, F. Nori, D. Yu, Front. Phys. 2023, 18, 21308.
10.1007/s11467-022-1249-z Google Scholar
- 6S. Niu, A. Todri-Sanial, Quantum 2023, 7, 925.
10.22331/q-2023-02-16-925 Google Scholar
- 7S. Kwon, A. Tomonaga, G. Lakshmi Bhai, S. J. Devitt, J.-S. Tsai, J. Appl. Phys. 2021, 129, 041102.
- 8P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, W. D. Oliver, Appl. Phys. Rev. 2019, 6, 021318.
- 9J. M. Gambetta, J. M. Chow, M. Steffen, npj Quantum Inf. 2017, 3, 2.
- 10D. Kielpinski, C. Monroe, D. J. Wineland, Nature 2002, 417, 709.
- 11S. A. Moses, C. H. Baldwin, M. S. Allman, R. Ancona, L. Ascarrunz, C. Barnes, J. Bartolotta, B. Bjork, P. Blanchard, M. Bohn, J. G. Bohnet, N. C. Brown, N. Q. Burdick, W. C. Burton, S. L. Campbell, J. P. Campora III, C. Carron, J. Chambers, J. W. Chan, Y. H. Chen, A. Chernoguzov, E. Chertkov, J. Colina, J. P. Curtis, R. Daniel, M. DeCross, D. Deen, C. Delaney, J. M. Dreiling, C. T. Ertsgaard, et al., A Race Track Trapped-Ion Quantum Processor, arXiv:2305.03828 2023
- 12R. Blümel, N. Grzesiak, N. H. Nguyen, A. M. Green, M. Li, A. Maksymov, N. M. Linke, Y. Nam, Phys. Rev. Lett. 2021, 126, 220503.
- 13 IBM. Quantum composer (available at: https://quantum-computing.ibm.com) (accessed: June 2023).
- 14P. S. Pacheco, M. Malensek, An Introduction to Parallel Programming, Elsevier, Amsterdam 2021.
- 15J. Catsoulis, Designing embedded hardware, O'Reilly, Sebastopol, CA 2005.
- 16D. Deutsch, R. Jozsa, Proc. R. Soc. Lond. A 1992, 439, 553.
- 17V. Vedral, A. Barenco, A. Ekert, Phys. Rev. A 1996, 54, 147.
- 18J. J. CÁlvarez-SCánchez, J. V. Álvarez-Bravo, L. M. Nieto, J. Phys.: Conf. Ser. 2008, 128, 012013.
10.1088/1742-6596/128/1/012013 Google Scholar
- 19M. K. Thomsen, R. Glück, H. B. Axelsen, J. Phys. A: Math. Theor. 2010, 43, 382002.
10.1088/1751-8113/43/38/382002 Google Scholar
- 20S. Ayyoub, B. Achour, Int. J. Theor. Phys. 2017, 56, 2686.
- 21A. Bolhassani, M. Haghparast, J. Elec. Eng. Comp. Sci. 2017, 25, 1137.
- 22B. Phillip, E. Butler, B. Ulrich, D. Carroll, in Proceedings of the 2023 ACM Southeast Conference, ACM, Virtual Event USA 2023, pp. 182–185.
- 23P. W. Shor, in Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Santa Fe, NM, USA 1994, pp. 124–134.
- 24A. W. Harrow, A. Hassidim, S. Lloyd, Phys. Rev. Lett. 2009, 103, 150502.
- 25Z. Gedik, I. A. Silva, B. Çakmak, G. Karpat, E. L. G. Vidoto, D. O. Soares-Pinto, E. R. deAzevedo, F. F. Fanchini, Sci. Rep. 2015, 5, 14671.
- 26T. G. Draper, Addition on a Quantum Computer, arXiv:quant-ph/0008033, 2000.
- 27C. M. Maynard, E. Pius, Quantum Inf Process 2014, 13, 1127.
- 28Y. S. Nam, R. Blümel, Phys. Rev. A 2015, 92, 042301.
10.1103/PhysRevA.92.042301 Google Scholar
- 29L. Ruiz-Perez, J. C. Garcia-Escartin, Quantum Inf. Process 2017, 16, 152.
10.1007/s11128-017-1603-1 Google Scholar
- 30E. Şahin, Int. J. Quantum Inform. 2020, 18, 2050035.
10.1142/S0219749920500355 Google Scholar
- 31A. Pavlidis, E. Floratos, Phys. Rev. A 2021, 103, 032417.
- 32A. Paler, Phys. Rev. A 2022, 106, 042444.
- 33S. Jakhodia, D. Singh, B. Jajodia, Experimental Evaluation of QFT Adders on IBM QX Hardware Emerging Technologies for Computing, Communication and Smart Cities, (Eds.: P. K. Singh, M. H. Kolekar, S. Tanwar, S. T. Wierzchoń, R. K. Bhatnagar), vol. 875, Springer Nature Singapore, Singapore 2022, pp. 419–435.
- 34I. Djordjevic, Quantum information processing and quantum error correction: an engineering approach, Elsevier Academic Press, Oxford, UK; Waltham, MA 2012.
- 35S. Ashhab, Phys. Rev. Res. 2022, 4, 013091.
- 36A. A. Melnikov, A. A. Termanova, S. V. Dolgov, F. Neukart, M. R. Perelshtein, Quantum Sci. Technol. 2023, 8, 035027.
10.1088/2058-9565/acd9e7 Google Scholar
- 37M. Schuld, F. Petruccione, Supervised Learning with Quantum Computers, Springer International Publishing, New York 2018.
10.1007/978-3-319-96424-9 Google Scholar
- 38V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, J. M. Gambetta, Nature 2019, 567, 209.
- 39M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press 2012.
- 40N. S. Yanofsky, M. A. Mannucci, Quantum Computing for Computer Scientists, Cambridge University Press 2008.
- 41R. Asaka, K. Sakai, R. Yahagi, Quantum Inf. Process 2020, 19, 277.
10.1007/s11128-020-02776-5 Google Scholar
- 42V. Dixit, S. Jian, Sci. Rep. 2022, 12, 654.
- 43Y. Cao, S.-G. Peng, C. Zheng, G.-L. Long, Commun. Theor. Phys. 2011, 55, 790.
- 44J. Von Neumann, IEEE Annals Hist. Comput. 1993, 15, 27.
- 45D. A. Patterson, J. L. Hennessy, Computer organization and design: the hardware/software interface, Elsevier Morgan Kaufmann, Amsterdam, Boston 2014.
- 46A. Kim, S.-M. Cho, C.-B. Seo, S. Lee, S.-H. Seo, Appl. Sci. 2021, 11, 2949.
- 47P. N. Glaskowsky, NVIDIA's Fermi: The First Complete GPU Computing Architecture, NVIDIA Whitepaper 2009
- 48H. Wang, M. E. Trusheim, L. Kim, H. Raniwala, D. R. Englund, Nat. Commun. 2023, 14, 704.
- 49M. Baklouti, M. Abid, International Journal of Reconfigurable Computing 2014, 2014, 1.
10.1155/2014/979327 Google Scholar
- 50M. Amiri, F. M. Siddiqui, C. Kelly, R. Woods, K. Rafferty, B. Bardak, J. Sign. Process Syst. 2017, 87, 139.
- 51S. Nolting, G. Payá-Vayá, F. Giesemann, H. Blume, S. Niemann, C. Müller-Schloer, Journal of Parallel and Distributed Computing 2019, 133, 391.
- 52V. Finotti, B. Albertini, An Open-Source Soft-Microcontroller Implementation Using an ARM Cortex-M0 on FPGA Anais do XX Workshop em Desempenho de Sistemas Computacionais e de Comunicação (WPerformance 2021), Sociedade Brasileira de Computação - SBC, Brasil 2021, pp. 96–107.
- 53P. S. Titare, D. G. Khairnar, IJHPSA 2023, 11, 156.
10.1504/IJHPSA.2023.130214 Google Scholar