Achieving Strong Magnon Blockade through Magnon Squeezing in a Cavity Magnetomechanical System
M. Amazioug
LPTHE, Department of Physics, Faculty of Sciences, Ibnou Zohr University, Agadir, 80000 Morocco
Search for more papers by this authorD. Dutykh
Mathematics Department, Khalifa University of Science and Technology, Abu Dhabi, 127788 United Arab Emirates
Causal Dynamics Pty Ltd, Perth, Australia
Search for more papers by this authorB. Teklu
Mathematics Department, Khalifa University of Science and Technology, Abu Dhabi, 127788 United Arab Emirates
Search for more papers by this authorCorresponding Author
M. Asjad
Mathematics Department, Khalifa University of Science and Technology, Abu Dhabi, 127788 United Arab Emirates
E-mail: [email protected]
Search for more papers by this authorM. Amazioug
LPTHE, Department of Physics, Faculty of Sciences, Ibnou Zohr University, Agadir, 80000 Morocco
Search for more papers by this authorD. Dutykh
Mathematics Department, Khalifa University of Science and Technology, Abu Dhabi, 127788 United Arab Emirates
Causal Dynamics Pty Ltd, Perth, Australia
Search for more papers by this authorB. Teklu
Mathematics Department, Khalifa University of Science and Technology, Abu Dhabi, 127788 United Arab Emirates
Search for more papers by this authorCorresponding Author
M. Asjad
Mathematics Department, Khalifa University of Science and Technology, Abu Dhabi, 127788 United Arab Emirates
E-mail: [email protected]
Search for more papers by this authorAbstract
A scheme that harnesses magnon squeezing under weak pump driving within a cavity magnomechanical system to achieve a robust magnon (photon) blockade is proposed. Through meticulous analytical calculations of optimal parametric gain and detuning values, the objective is to enhance the second-order correlation function. The findings demonstrate a substantial magnon blockade effect under ideal conditions, accompanied by a simultaneous photon blockade effect. Impressively, both numerical and analytical results are found to be in complete accord, providing robust validation for the consistency of the findings. It is anticipated that the proposed scheme will serve as a pioneering approach toward the practical realization of magnon (photon) blockade in experimental cavity magnomechanical systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1R. J. Glauber, Rev. Mod. Phys. 2006, 78, 1267.
- 2R. Hanbury Brown, R. C. Jennison, M. K. D. Gupta, Nature 1952, 170, 1061.
- 3R. H. Brown, R. Q. Twiss, Nature 1956, 177, 27.
- 4H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 1977, 39, 691.
- 5A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 1997, 79, 1467.
- 6J.-Q. Liao, C. K. Law, Phys. Rev. A 2010, 82, 053836.
- 7P. Rabl, Phys. Rev. Lett. 2011, 107, 063601.
- 8B. Sarma, A. K. Sarma, Phys. Rev. A 2017, 96, 053827.
- 9J.-Q. Liao, C. K. Law, Phys. Rev. A 2013, 87, 043809.
- 10J.-Q. Liao, F. Nori, Phys. Rev. A 2013, 88, 023853.
- 11H. Wang, X. Gu, Y.-X. Liu, A. Miranowicz, F. Nori, Phys. Rev. A 2015, 92, 033806.
- 12G.-L. Zhu, X.-Y. Lu, L.-L. Wan, T.-S. Yin, Q. Bin, Y. Wu, Phys. Rev. A 2018, 97, 033830.
- 13F. Zou, L.-B. Fan, J.-F. Huang, J.-Q. Liao, Phys. Rev. A 2019, 99, 043837.
- 14K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble, Nature 2005, 436, 87.
- 15A. Faraon, I. Fushman, D. R. Englund, N. G. Stoltz, P. M. Petroff, J. Vuckovic, Nat. Phys. 2008, 4, 859.
- 16A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, A. Imamoglu, Nat. Photonics 2011, 6, 93.
- 17K. Muller, A. Rundquist, K. A. Fischer, T. Sarmiento, K. G. Lagoudakis, Y. A. Kelaita, C. Sanchez Munoz, E. del Valle, F. P. Laussy, J. Vuckovic, Phys. Rev. Lett. 2015, 114, 233601.
- 18E. Knill, R. Laflamme, G. J. Milburn, Nature 2001, 409, 46.
- 19P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn, Rev. Mod. Phys. 2007, 79, 135.
- 20T. C. H. Liew, V. Savona, Phys. Rev. Lett. 2010, 104, 183601.
- 21M. Bamba, A. Imamoglu, I. Carusotto, C. Ciuti, Phys. Rev. A 2011, 83, 021802.
- 22M. Bajcsy, A. Majumdar, A. Rundquist, J. Vuckovic, New J. Phys. 2013, 15, 025014.
- 23W. Leonki, R. Tanas, Phys. Rev. A 1994, 49, R20.
- 24L. Tian, H. J. Carmichael, Phys. Rev. A 1992, 46, R6801.
- 25A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Tueci, A. A. Houck, Phys. Rev. Lett. 2011, 107, 053602.
- 26H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, W. Lofler, Phys. Rev. Lett. 2018, 121, 043601.
- 27C. Vaneph, A. Morvan, G. Aiello, M. Fehant, M. Aprili, J. Gabelli, J. Esteve, Phys. Rev. Lett. 2018, 121, 043602.
- 28D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, Y. Nakamura, Appl. Phys. Express 2019, 12, 070101.
- 29M. Amazioug, B. Teklu, M. Asjad, Sci. Rep. 2023, 13, 3833.
- 30H. Yuan, Y. Cao, A. Kamra, R. A. Duine, P. Yan, Phys. Rep. 2022, 965, 1.
- 31X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang, Sci. Adv. 2016, 2, e1501286.
- 32M. Asjad, J. Li, S.-Y. Zhu, J. You, Fundam. Res. 2023, 3, 3.
- 33Z.-Y. Fan, R.-C. Shen, Y.-P. Wang, J. Li, J. Q. You, Phys. Rev. A 2022, 105, 033507.
- 34M. Setodeh Kheirabady, E. Ghasemian, M. K. Tavassoly, Ann. Phys. 2023, 535, 2300024.
- 35Z.-X. Liu, H. Xiong, Y. Wu, Phys. Rev. B 2019, 100, 134421.
- 36J.-K. Xie, S.-L. Ma, F.-L. Li, Phys. Rev. A 2020, 101, 042331.
- 37Y.-L. Ren, S.-L. Ma, F.-L. Li, Phys. Rev. A 2022, 106, 053714.
- 38J. Li, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. Lett. 2018, 121, 203601.
- 39R.-C. Shen, J. Li, Z.-Y. Fan, Y.-P. Wang, J. Q. You, Phys. Rev. Lett. 2022, 129, 123601.
- 40A. Kamra, W. Belzig, Phys. Rev. Lett. 2016, 116, 146601.
- 41H. Yuan, Y. Cao, A. Kamra, R. A Duine, P. Yan, Phys. Rep. 2022, 965, 1.
- 42A. Kamra, W. Belzig, A. Brataas, Appl. Phys. Lett. 2020, 117, 090501.
- 43J. Zhao, A. V. Bragas, D. J. Lockwood, R. Merlin, Phys. Rev. Lett. 2004, 93, 107203.
- 44J. Zhao, A. V. Bragas, R. Merlin, D. J. Lockwood, Phys. Rev. B 2006, 73, 184434.
- 45D. Bossini, S. Dal Conte, Y. Hashimoto, A. Secchi, R. V. Pisarev, Th. Rasing, G. Cerullo, A. V. Kimel, Nat. Commun. 2016, 7, 10645.
- 46D. Bossini, S. Dal Conte, G. Cerullo, O. Gomonay, R. V. Pisarev, M. Borovsak, D. Mihailovic, J. Sinova, J. H. Mentink, Th. Rasing, A. V. Kimel, Phys. Rev. B 2019, 100, 024428.
- 47S. L. Johnson, P. Beaud, E. Vorobeva, C. J. Milne, É. D. Murray, S. Fahy, G. Ingold, Phys. Rev. Lett. 2009, 102, 175503.
- 48A. Candeloro, S. Razavian, M. Piccolini, B. Teklu, S. Olivares, M. G. A. Paris, Entropy 2021, 23, 1353.
- 49Z.-B. Yang, H. Jin, J.-W. Jin, J.-Y. Liu, H.-Y. Liu, R.-C. Yang, Phys. Rev. Res. 2021, 3, 023126.
- 50J. Li, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. A 2019, 99, 021801.
- 51F. Zou, X.-Y. Zhang, X.-W. Xu, J.-F. Huang, J.-Q. Liao, Phys. Rev. A 2020, 102, 053710.
- 52Y.-T. Guo, F. Zou, J.-F. Huang, J.-Q. Liao, Phys. Rev. A 2022, 105, 013705.
- 53M. Rastegarzadeh, M. K. Tavassoly, M. Hassani Nadiki, Quantum Inf. Process. 2023, 22, 95.
10.1007/s11128-023-03840-6 Google Scholar