Giant Nonlinear Circular Dichroism from High Q-Factor Asymmetric Lithium Niobate Metasurfaces
Qing-Song Liu
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorBo Cheng
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorMing-Hao Chao
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorWen-Jing Zhang
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorYun Xu
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Guo-Feng Song
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
E-mail: [email protected]
Search for more papers by this authorQing-Song Liu
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorBo Cheng
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorMing-Hao Chao
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorWen-Jing Zhang
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorYun Xu
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Guo-Feng Song
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing, 100083 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Lithium niobate (LN) is a good nonlinear material with a large second-order nonlinear polarization coefficient and low optical loss in the UV to mid-infrared spectral regions. By combining bound states in the continuum (BICs) with chirality, a high conversion efficiency and strong second-harmonic circular dichroism (SHG-CD) can be achieved. The simulated results show that the SHG conversion efficiency can reach 1.35 × 10−2% for a peak-pump intensity of ≈5.3 GW cm−2 in the near-infrared, and the SHG-CD can reach 0.98 by introducing a two-layer structure. Quasi-BICs are introduced to study nonlinear CD, which provide new insights for the further implementation of spin-dependent nonlinear applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, Adv. Mater. 2013, 25, 2517.
- 2Z. Wu, Y. Liu, H. Eric, Y. Zheng, Nanoscale 2018, 10, 18096.
- 3Z. Wang, F. Cheng, T. Winsor, Y. Liu, Nanotechnology 2016, 27, 412001.
- 4X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, X. Luo, Nanomaterials 2017, 7, 116.
- 5M. Hentschel, M. Schaferling, X. Duan, H. Giessen, N. Liu, Sci. Adv. 2017, 3, e1602735.
- 6I. D. Leon, M. J. Horton, S. A. Schulz, J. Upham, P. R. W. Banzer, Sci. Rep. 2015, 5, 13034.
- 7Z. Li, W. Liu, H. Cheng, S. Chen, J. Tian, Sci. Rep. 2017, 7, 8204.
- 8J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, C. Wang, Sci. Rep. 2017, 7, 41893.
- 9Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, M. Hong, Opt. Express 2018, 26, 6067.
- 10A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, Y. Yao, Light: Sci. Appl. 2019, 8, 78.
- 11Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, A. Alù, Nat. Commun. 2017, 8, 14180.
- 12J. García-Guirado, M. Svedendahl, J. Puigdollers, R. Quidant, Nano Lett. 2018, 18, 6279.
- 13S. P. Rodrigues, S. Lan, K. Lei, Y. Cui, W. Cai, Adv. Mater. 2014, 26, 6157
- 14K. Kim, J. An, W. Rim, Ann. Phys. 2020, 532, 1900383.
- 15K. H. Kim, J. R. Kim, Ann. Phys. 2020, 532, 2000078.
- 16D. Kim, J. Yu, I. Hwang, S. Park, F. Demmerle, G. Boehm, M. C. Amann, M. A. Belkin, J. Lee, Nano Lett. 2020, 20, 8032.
- 17Y. Tang, Z. Liu, J. Deng, K. Li, J. Li, G. Li, Laser Photonics Rev. 2020, 14, 2000085.
- 18L. Kang, C. Y. Wang, X. Guo, X. Ni, Z. Liu, D. H. Werner, Nano Lett. 2020, 20, 2047.
- 19C. Yang, X. Yang, G. Jie, Light: Sci. Appl. 2018, 7, 84.
- 20W. Qiu, P. Eric, Q. Yang, X. Zhang, X. Quan, Y. Xu, J. Han, W. Zhang, Light: Sci. Appl. 2018, 7, 25.
- 21Y. Chen, J. Gao, X. Yang, Adv. Opt. Mater. 2019, 7, 1801467.
- 22J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, N. Liu, Sci. Adv. 2018, 4, eaar6768.
- 23E. Minerbi, S. Keren-Zur, T. Ellenbogen, Nano Lett. 2019, 19, 6072.
- 24N. Mao, J. Deng, X. Zhang, Y. Tang, M. Jin, Y. Li, X. Liu, K. Li, T. Cao, K. Cheah, H. Wang, J. Ng, G. Li, Nano Lett. 2020, 20, 7463.
- 25Z. Lin, L. Huang, Z. T. Xu, X. Li, T. Zentgraf, Y. Wang, Adv. Opt. Mater. 2019, 7, 1900782.
- 26C. Schlickriede, S. S. Kruk, L. Wang, B. Sain, Y. Kivshar, T. Zentgraf, Nano Lett. 2020, 20, 4370.
- 27M. Ren, E. Plum, J. Xu, N. I. Zheludev, Nat. Commun. 2012, 3, 833.
- 28S. Chen, F. Zeuner, M. Weismann, B. Reineke, G. Li, V. K. Valev, K. W. Cheah, N. C. Panoiu, T. Zentgraf, S. Zhang, Adv. Mater. 2016, 28, 2992.
- 29S. Chen, G. Li, K. W. Cheah, T. Zentgraf, Z. Shuang, Nanophotonics 2018, 7, 1013.
- 30A. Fedotova, M. Younesi, J. Sautter, A. Vaskin, F. J. F. Löchner, M. Steinert, R. Geiss, T. Pertsch, I. Staude, F. Setzpfandt, Nano Lett. 2020, 20, 8608.
- 31L. Kang, H. Bao, D. H. Werner, Opt. Lett. 2021, 46, 633.
- 32K. H. Kim, Plasmonics 2021, 16, 77.
- 33K. H. Kim, W. S. Rim, ACS Photonics 2018, 5, 4769.
- 34K. H. Kim, W. S. Rim, Phys. Chem. Chem. Phys. 2019, 21, 19076.
- 35K. H. Kim, Phys. Chem. Chem. Phys. 2020, 22, 7300.
- 36Y. Li, Z. Huang, Z. Sui, H. Chen, X. Zhang, W. Huang, H. Guan, W. Qiu, J. Dong, W. Zhu, J. Yu, H. Lu, Z. Chen, Nanophotonics 2020, 9, 3575.
- 37A. Overvig, N. Yu, A. Alu, Phys. Rev. Lett. 2021, 126, 073001.
- 38Y. Zhao, J. Shi, L. Sun, X. Li, A. Alu, Adv. Mater. 2014, 26, 1439.
- 39E. D. Palik, Handbook of Optical Properties of Solids, Academic Press, New York 1985.
- 40A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, N. Yu, Phys. Rev. B 2020, 102, 035434.
- 41Q. Yang, Y. Liu, X. Gan, C. Fang, Y. Hao, IEEE Photonics J. 2020, 12, 1.
- 42F. Bach, M. Mero, M.-H. Chou, V. Petrov, Opt. Mater. Express 2017, 7, 240.
- 43K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, Y. Kivshar, Phys. Rev. Lett. 2018, 121, 193903.
- 44L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, W. Cai, Nano Lett. 2017, 17, 7102.
- 45V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, T. Verbiest, Adv. Mater. 2014, 26, 4074.