Nonreciprocal Transmission and Nonreciprocal Entanglement in a Spinning Microwave Magnomechanical System
Zhi-Bo Yang
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
Search for more papers by this authorJin-Song Liu
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
Search for more papers by this authorAi-Dong Zhu
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
Search for more papers by this authorCorresponding Author
Hong-Yu Liu
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Rong-Can Yang
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, and College of Physics and Energy, Fujian Normal University, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhi-Bo Yang
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
Search for more papers by this authorJin-Song Liu
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
Search for more papers by this authorAi-Dong Zhu
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
Search for more papers by this authorCorresponding Author
Hong-Yu Liu
Department of Physics, College of Science, Yanbian University, Yanji, Jilin, 133002 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Rong-Can Yang
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, and College of Physics and Energy, Fujian Normal University, Fuzhou, 350117 China
Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
This study presents nonreciprocal transmission and nonreciprocal magnon–phonon entanglement in a spinning microwave magnomechanical system. This system consists of microwave photons, magnon modes, and phonons. These are created by the vibrational mode of a yttrium iron garnet sphere. This investigation reveals that nonreciprocity is caused by the light that is circulating in a resonator that is experiencing a Fizeau shift. This leads to a difference in the effective detuning frequency of the photon for forwarding and backward drives. A super-strong transmission isolation rate (>100 dB) and a strong entanglement isolation rate (≈50 dB) are obtained by applying the experimental parameters. This scheme opens a new route for exploiting a variety of nonreciprocal effects, and it provides the theoretical basis for the design and realization of magnetically controllable isolators and diodes.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1D. L. Sounas, A. Alù, Photonics 2017, 11, 774.
- 2J. Fujita, M. Levy, R. M. Osgood, Jr, L. Wilkens, H. Dötsch, Appl. Phys. Lett. 2000, 76, 2158.
- 3T. R. Zaman, X. Guo, R. J. Ram, Appl. Phys. Lett. 2007, 90, 023514.
- 4F. D. M. Haldane, S. Raghu, Phys. Rev. Lett. 2008, 100, 013904.
- 5Y. Hadad, B. Z. Steinberg, Phys. Rev. Lett. 2010, 105, 233904.
- 6Y. Shoji, M. Ito, Y. Shirato, T. Mizumoto, Opt. Express 2012, 20, 18440.
- 7A. Rostami, Opt. Laser Technol. 2007, 39, 1059.
- 8A. Alberucci, G. Assanto, Opt. Lett. 2008, 33, 1641.
- 9L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, M. Qi, Opt. Lett. 2013, 38, 1259.
- 10K. Gallo, G. Assanto, K. R. Parameswaran, M. M. Fejer, Appl. Phys. Lett. 2001, 79, 314.
- 11S. F. Mingaleev, Y. S. Kivshar, J. Opt. Soc. Am. B 2002, 19, 2241.
- 12Y.-P. Wang, J. W. Rao, Y. Yang, P.-C. Xu, Y. S. Gui, B. M. Yao, J. Q. You, C.-M. Hu, Phys. Rev. Lett. 2019, 123, 127202.
- 13C. Kong, H. Xiong, Y. Wu, Phys. Rev. Applied 2019, 12, 034001.
- 14S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, T. Carmon, Nature 2018, 558, 569.
- 15R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing, Phys. Rev. Lett. 2018, 121, 153601.
- 16C. Kittel, Phys. Rev. 1948, 73, 155.
- 17H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, S. T. B. Goennenwein, Phys. Rev. Lett. 2013, 111, 127003.
- 18Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. Lett. 2014, 113, 083603.
- 19D. Zhang, X.-Q. Luo, Y.-P. Wang, T.-F Li, J. Q. You, Nat. Commun. 2017, 8, 1368.
- 20L. H. Bai, M. Harder, P. Hyde, Z. H. Zhang, C.-M. Hu, Y. P. Chen, J. Q. Xiao, Phys. Rev. Lett. 2017, 118, 217201.
- 21Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, J. Q. You, Phys. Rev. Lett. 2018, 120, 057202.
- 22J. Li, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. Lett. 2018, 121, 203601.
- 23J. Li, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. A. 2019, 99, 021801(R).
- 24N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, V. Lefèvre, Opt. Lett. 1995, 20, 813.
- 25S. M. Spillane, T. J. Kippenberg, O. J. Painter, K. J. Vahala, Phys. Rev. Lett. 2003, 91, 043902.
- 26X. Zhang, C.-L. Zou, L. Jiang, H. X. Tang, Sci. Adv. 2016, 2, e1501286.
- 27Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Science 2015, 349, 405.
- 28D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, Y. Nakamura, Sci. Adv. 2017, 3, e1603150.
- 29A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, Y. Nakamura, Phys. Rev. Lett. 2016, 116, 223601.
- 30X. Zhang, N. Zhu, C.-L. Zou, H. X. Tang, Phys. Rev. Lett. 2016, 117, 123605.
- 31J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, A. J. Ferguson, Phys. Rev. Lett. 2016, 117, 133602.
- 32R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. B 2016, 93, 174427.
- 33C. Braggio, G. Carugno, M. Guarise, A. Ortolan, G. Ruoso, Phys. Rev. Lett. 2017, 118, 107205.
- 34X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, H. X. Tang, Nat. Commun. 2015, 6, 8914.
- 35C. W. Gardiner, P. Zoller, Quantum Noise, Springer, New York 2004.
- 36D. F. Walls, G. J. Milburn, Quantum Optics, Springer, Berlin 2008.
10.1007/978-3-540-28574-8 Google Scholar
- 37a) J. Eisert, Ph.D. thesis, University of Potsdam, Potsdam 2001; b) G. Vidal, R. F. Werner, Phys. Rev. A 2002, 65, 032314; c) M. B. Plenio, Phys. Rev. Lett. 2005, 95, 090503.
- 38J. Li, S. Gröblacher, S.-Y. Zhu, G. S. Agarwal, Phys. Rev. A 2018, 98, 011801(R).
- 39M. Yu, H. Shen, J. Li, arXiv:quant-ph/1909.05936v1, 2020.
- 40X. Zhang, N. Zhu, C.-L. Zou, H. X. Tang, Phys. Rev. Lett. 2016, 117, 123605.