Heteroatom-Containing Dendritic Mesoporous Silica Nanoparticles
Bo Peng
East China Normal University, College of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, 3663 Zhongshan North Road, Shanghai, 200062 China
Search for more papers by this authorJia-Feng Zhou
East China Normal University, College of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, 3663 Zhongshan North Road, Shanghai, 200062 China
Search for more papers by this authorMeng Ding
East China Normal University, College of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, 3663 Zhongshan North Road, Shanghai, 200062 China
Search for more papers by this authorLaurent Bonneviot
Université de Lyon, Institut de Chimie de Lyon, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 Allée d'italie, Lyon, 69364 CEDEX 07 France
Search for more papers by this authorKun Zhang
East China Normal University, College of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, 3663 Zhongshan North Road, Shanghai, 200062 China
Université de Lyon, Institut de Chimie de Lyon, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 Allée d'italie, Lyon, 69364 CEDEX 07 France
Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai, 202162 China
Search for more papers by this authorBo Peng
East China Normal University, College of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, 3663 Zhongshan North Road, Shanghai, 200062 China
Search for more papers by this authorJia-Feng Zhou
East China Normal University, College of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, 3663 Zhongshan North Road, Shanghai, 200062 China
Search for more papers by this authorMeng Ding
East China Normal University, College of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, 3663 Zhongshan North Road, Shanghai, 200062 China
Search for more papers by this authorLaurent Bonneviot
Université de Lyon, Institut de Chimie de Lyon, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 Allée d'italie, Lyon, 69364 CEDEX 07 France
Search for more papers by this authorKun Zhang
East China Normal University, College of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, 3663 Zhongshan North Road, Shanghai, 200062 China
Université de Lyon, Institut de Chimie de Lyon, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, 46 Allée d'italie, Lyon, 69364 CEDEX 07 France
Institute of Eco-Chongming, 20 Cuiniao Road, Shanghai, 202162 China
Search for more papers by this authorPeng Wu
East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 China
Search for more papers by this authorHao Xu
East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 China
Search for more papers by this authorSummary
Owing to the optimized intrapore diffusion/mass transport, dendritic mesoporous silica nanoparticles (DMSNs) with unique wrinkled center-radial structures have attracted a special interest as new nanoreactors. Although several sophisticatedly designed methodologies have been developed to synthesize pure silica-based DMSNs with adjustable porosity and variable particle size, few studies have focused on the efficient synthesis of DMSNs containing heterometal atoms. In this chapter, based on the in-depth understanding on the formation mechanism of DMSNs with all the reported methods, we systematically reviewed the latest research progress in the synthesis of heteroatom-containing DMSNs (denoted as HC-DMSNs) and their typical catalytic applications. Ultimately, the chapter is concluded with an outlook on the prospects and challenges in terms of the precise design of HC-DMSNs with controlled size, defined catalytic active sites, and optimized catalytic properties.
References
- Beck , J.S. , Vartuli , J.C. , Roth , W.J. et al. ( 1992 ). A new family of mesoporous molecular sieves prepared with liquid crystal templates . J. Am. Chem. Soc. 114 : 10834 – 10843 .
- Kresge , C.T. , Leonowicz , M.E. , Roth , W.J. et al. ( 1992 ). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism . Nature 359 : 710 – 712 .
- Huo , Q.S. , Margolese , D.I. , Ciesla , U. et al. ( 1994 ). Generalized synthesis of periodic surfactant/inorganic composite materials . Nature 368 : 317 – 321 .
- Firouzi , A. , Kumar , D. , Bull , L.M. et al. ( 1995 ). Cooperative organization of inorganic-surfactant and biomimetic assemblies . Science 267 : 1138 – 1143 .
- Yu , Y.J. , Xing , J.L. , Pang , J.L. et al. ( 2014 ). Facile synthesis of size controllable dendritic mesoporous silica nanoparticles . ACS Appl. Mater. Interfaces 6 : 22655 – 22665 .
- Trewyn , B.G. , Slowing , I.I. , Giri , S. et al. ( 2007 ). Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release . Acc. Chem. Res. 40 : 846 – 853 .
- Rosenholm , J.M. , Sahlgren , C. , and Lindén , M. ( 2010 ). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles-opportunities & challenges . Nanoscale 2 : 1870 – 1883 .
- Valtchev , V. and Tosheva , L. ( 2013 ). Porous nanosized particles: preparation, properties, and applications . Chem. Rev. 113 : 6734 – 6760 .
- Wu , S.H. , Mou , C.Y. , and Lin , H.P. ( 2013 ). Synthesis of mesoporous silica nanoparticles . Chem. Soc. Rev. 42 : 3862 – 3875 .
- Argyo , C. , Weiss , V. , Bräuchle , C. , and Bein , T. ( 2014 ). Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery . Chem. Mater. 26 : 435 – 451 .
- Yamamoto , E. and Kuroda , K. ( 2016 ). Colloidal mesoporous silica nanoparticles . Bull. Chem. Soc. Jpn. 89 : 501 – 539 .
- Möller , K. and Bein , T. ( 2017 ). Talented mesoporous silica nanoparticles . Chem. Mater. 29 : 371 – 388 .
- Lin , H. , Chen , Y. , and Shi , J.L. ( 2018 ). Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy . Chem. Soc. Rev. 47 : 1938 – 1958 .
- Huang , J.X. ( 2020 ). Welcome to accounts of materials research . Acc. Chem. Res. 1 : 1 – 2 .
- Polshettiwar , V. , Cha , D. , Zhang , X.X. , and Basset , J.M. ( 2010 ). High-surface-area silica nanospheres (KCC-1) with a fibrous morphology . Angew. Chem. Int. Ed. 49 : 9652 – 9656 .
- Zhang , K. , Xu , L.L. , Jiang , J.G. et al. ( 2013 ). Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure . J. Am. Chem. Soc. 135 : 2427 – 2430 .
- Du , X. and Qiao , S.Z. ( 2015 ). Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications . Small 11 : 392 – 413 .
- Wang , Y.B. , Du , X. , Liu , Z. et al. ( 2019 ). Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials . J. Mater. Chem. A 7 : 5111 – 5152 .
- Hao , P. , Peng , B. , Shan , B.Q. et al. ( 2020 ). Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres . Nanoscale Adv. 2 : 1792 – 1810 .
- Wang , Y.B. , Zhang , B.L. , Ding , X.P. , and Du , X. ( 2021 ). Dendritic mesoporous organosilica nanoparticles (DMONs): chemical composition, structural architecture, and promising applications . Nano Today 39 : 101231 .
- Malekmohammadi , S. , Mohammed , R.U.R. , Samadian , H. et al. ( 2022 ). Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies . Mater. Today Chem. 26 : 101144 .
- Pelluau , T. , Sene , S. , Garcia Cirera , B. et al. ( 2022 ). Multifunctionalized mesostructured silica nanoparticles containing Mn2 complex for improved catalase-mimicking activity in water . Nanomaterials 12 : 1136 .
- Polshettiwar , V. ( 2022 ). Dendritic fibrous nanosilica: discovery, synthesis, formation mechanism, catalysis, and CO 2 capture–conversion . Acc. Chem. Res. 55 : 1395 – 1410 .
- Xu , C. , Lei , C. , Wang , Y. , and Yu , C.Z. ( 2022 ). Dendritic mesoporous nanoparticles: structure, synthesis and properties . Angew. Chem. Int. Ed. 134 : e202112752 .
- Lin , H.X. , Cui , K. , Yao , Y.W. et al. ( 2005 ). A simple route for preparing radiolarian-like mesoporous silica from water–diethyl ether binary solvent system . Chem. Lett. 34 : 918 – 919 .
- Nandiyanto , A.B.D. , Kim , S. , Iskandar , F. , and Okuyama , K. ( 2009 ). Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters . Microporous Mesoporous Mater. 120 : 447 – 453 .
- Du , X. and He , J.H. ( 2010 ). Fine-tuning of silica nanosphere structure by simple regulation of the volume ratio of cosolvents . Langmuir 26 : 10057 – 10062 .
- Zhang , H.J. , Li , Z.Y. , Xu , P.P. et al. ( 2010 ). A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release . Chem. Commun. 46 : 6783 – 6785 .
- Shen , D.K. , Yang , J.P. , Li , X.M. et al. ( 2014 ). Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres . Nano Lett. 14 : 923 – 932 .
- Cai , Q. , Geng , Y. , Zhao , X. et al. ( 2008 ). Morphological classification of mesoporous silicas synthesized in a binary water–ether solvent system . Microporous Mesoporous Mater. 108 : 123 – 135 .
- Moon , D. and Lee , J. ( 2012 ). Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure . Langmuir 28 : 12341 – 12347 .
- Gustafsson , H. , Isaksson , S. , Altskar , A. , and Holmberg , K. ( 2016 ). Mesoporous silica nanoparticles with controllable morphology prepared from oil-in-water emulsions . J. Colloid Interface Sci. 467 : 253 – 260 .
- Ernawati , L. , Balgis , R. , Ogi , T. , and Okuyama , K. ( 2017 ). Tunable synthesis of mesoporous silica particles with unique radially oriented pore structures from tetramethyl orthosilicate via oil–water emulsion process . Langmuir 33 : 783 – 790 .
- Maity , A. , Das , A. , Sen , D. et al. ( 2017 ). Unraveling the formation mechanism of dendritic fibrous nanosilica . Langmuir 33 : 13774 – 13782 .
- Pereira , C. , Alves , C. , Monteiro , A. et al. ( 2011 ). Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles . ACS Appl. Mater. Interfaces 3 : 2289 – 2299 .
- Paula , A.J. , Montoro , L.A. , Filho , A.G.S. , and Alves , O.L. ( 2012 ). Towards long-term colloidal stability of silica-based nanocarriers for hydrophobic molecules: beyond the Stöber method . Chem. Commun. 48 : 591 – 593 .
- Wu , M.Y. , Meng , Q.S. , Chen , Y. et al. ( 2015 ). Large-pore ultrasmall mesoporous organosilica nanoparticles: micelle/precursor co-templating assembly and nuclear-targeted gene delivery . Adv. Mater. 27 : 215 – 222 .
- Kalantari , M. , Liu , Y. , Strounina , E. et al. ( 2018 ). Superhydrophobic dendritic mesoporous organosilica nano-particles with ultrahigh-content of gradient organic moieties . J. Mater. Chem. A 6 : 17579 – 17586 .
- Shan , B.Q. , Xing , J.L. , Yang , T.Q. et al. ( 2019 ). One-pot co-condensation strategy for dendritic mesoporous organosilica nanospheres with fine size and morphology control . CrystEngComm 21 : 4030 – 4035 .
- Wang , Y. , Nor , Y.A. , Song , H. et al. ( 2016 ). Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery . J. Mater. Chem. B 4 : 2646 – 2653 .
- Liu , P.C. , Yu , Y.J. , Peng , B. et al. ( 2017 ). A dual-templating strategy for the scale-up synthesis of dendritic mesoporous silica nanospheres . Green Chem. 19 : 5575 – 5581 .
- Wang , Y. , Song , H. , Yu , M.H. et al. ( 2018 ). Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance . J. Mater. Chem. B 6 : 4089 – 4095 .
-
Peng , B.
,
Zhou , J.F.
,
Chen , H.
et al. (
2022
).
Tetraalkoxysilane assisted self-emulsification templating for mesoporous silica nanoparticles with controlled mesostructures
.
ChemRxiv. Cambridge: Cambridge Open Engage
https://doi.org/10.26434/chemrxiv-2022-tz5ss
.
10.26434/chemrxiv?2022?tz5ss Google Scholar
- Lim , S.W. , Jang , H.G. , Sim , H. et al. ( 2014 ). Preparation of dandelion-type silica spheres and their application as catalyst supports . J. Porous. Mater. 21 : 797 – 809 .
- Xu , C. , Yu , M.H. , Noonan , O. et al. ( 2015 ). Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery . Small 11 : 5949 – 5955 .
- Si , Y.S. , Huang , T. , Xie , H.Q. , and Chen , M. ( 2022 ). Synthesis of biomimetic brochosome-shaped microspheres via droplets assembly strategy . Chem. Mater. 34 : 7271 – 7279 .
- Yang , Y.N. , Bernardi , S. , Song , H. et al. ( 2016 ). Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: understanding the composition gradient . Chem. Mater. 28 : 704 – 707 .
- Moon , D. and Lee , J. ( 2014 ). Formation of wrinkled silica mesostructures based on the phase behavior of pseudoternary systems . Langmuir 30 : 15574 – 15580 .
- Bahadur , J. , Maity , A. , Sen , D. et al. ( 2021 ). Origin of the hierarchical structure of dendritic fibrous nanosilica: a small-angle X-ray scattering perspective . Langmuir 37 : 6423 – 6434 .
- Sheng , Y. and Zeng , H.C. ( 2015 ). Monodisperse aluminosilicate spheres with tunable Al/Si ratio and hierarchical macro-meso-microporous structure . ACS Appl. Mater. Interfaces 7 : 13578 – 13589 .
- Choi , Y. , Yun , Y.S. , Park , H. et al. ( 2014 ). A facile approach for the preparation of tunable acid nano-catalysts with a hierarchically mesoporous structure . Chem. Commun. 50 : 7652 – 7655 .
- Jiao , J.Q. , Fu , J.Y. , Wei , Y.C. et al. ( 2017 ). Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: efficient accessibility of active sites and suitable metal–support interaction . J. Catal. 356 : 269 – 282 .
- Wang , Z.J. and Balkus , K.J. ( 2017 ). Synthesis and modification of titanium containing wrinkled mesoporous silica for cyclohexene epoxidation . Microporous Mesoporous Mater. 243 : 76 – 84 .
- Wang , Z.J. and Balkus , K.J. ( 2017 ). Liquid phase propylene oxidation with tert-butyl hydroperoxide over titanium containing wrinkled mesoporous silica . Catal. Commun. 96 : 15 – 18 .
- Liu , Q.L. , Yang , Z. , Luo , M.S. et al. ( 2019 ). Vanadium-containing dendritic mesoporous silica nanoparticles: multifunctional catalysts for the oxidative and non-oxidative dehydrogenation of propane to propylene . Microporous Mesoporous Mater. 282 : 133 – 145 .
- Liu , Q.L. , Luo , M.S. , Zhao , Z. , and Zhao , Q.N. ( 2020 ). K-modified Sn-containing dendritic mesoporous silica nanoparticles with tunable size and SnOx-silica interaction for the dehydrogenation of propane to propylene . Chem. Eng. J. 380 : 122423 .
- Liu , B. , Feng , L.L. , Bian , Y.L. et al. ( 2022 ). Mn 2+ /Fe 3+ /Co 2+ and tetrasulfide bond co-incorporated dendritic mesoporous organosilica as multifunctional nanocarriers: one-step synthesis and applications for cancer therapy . Adv. Healthc. Mater. 11 : 2200665 .
- Zhang , K. , Albela , B. , He , M.Y. et al. ( 2009 ). Tetramethyl ammonium as masking agent for molecular stencil patterning in the confined space of the nano-channels of 2D hexagonal-templated porous silicas . Phys. Chem. Chem. Phys. 11 : 2912 – 2921 .
- Zhang , K. , Lam , K.F. , Albela , B. et al. ( 2011 ). Mononuclear-dinuclear equilibrium of grafted copper complexes confined in the nanochannels of MCM-41 silica . Chem. Eur. J. 17 : 14258 – 14266 .
- Albela , B. and Bonneviot , L. ( 2016 ). Surface molecular engineering in the confined space of templated porous silica . New J. Chem. 40 : 4115 – 4131 .
- Vidal , V. , Théolier , A. , Thivolle Cazat , J. et al. ( 1996 ). Synthesis, characterization, and reactivity, in the C–H bond activation of cycloalkanes, of a silica-supported tantalum(III) monohydride complex: (⋮SiO) 2 Ta III −H . J. Am. Chem. Soc. 118 : 4595 – 4602 .
- Coperet , C. , Comas Vives , A. , Conley , M.P. et al. ( 2016 ). Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities . Chem. Rev. 116 : 323 – 421 .
- Gioffrè , D. , Rochlitz , L. , Payard , P. et al. ( 2022 ). Grafting of Group-10 organometallic complexes on silicas: differences and similarities, surprises and rationale . Helv. Chim. Acta 105 : e202200073 .
- Polshettiwar , V. , Thivolle Cazat , J. , Taoufik , M. et al. ( 2011 ). “Hydro-metathesis” of olefins: a catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres . Angew. Chem. Int. Ed. 50 : 2747 – 2751 .
- Chen , Y.T. , Yang , T.Q. , Pan , H.F. et al. ( 2014 ). Photoemission mechanism of water-soluble silver nanoclusters: ligand-to-metal–metal charge transfer vs strong coupling between surface plasmon and emitters . J. Am. Chem. Soc. 136 : 1686 – 1689 .
- Yang , T.Q. , Dai , S. , Yang , S.Q. et al. ( 2017 ). Interfacial clustering-triggered fluorescence–phosphorescence dual solvoluminescence of metal nanoclusters . J. Phys. Chem. Lett. 8 : 3980 – 3985 .
- Yang , T.Q. , Shan , B.Q. , Huang , F. et al. ( 2019 ). P band intermediate state (PBIS) tailors photoluminescence emission at confined nanoscale interface . Commun. Chem. 2 : 1 – 11 .
- Yang , T.Q. , Peng , B. , Shan , B.Q. et al. ( 2020 ). Origin of the photoluminescence of metal nanoclusters: from metal-centered emission to ligand-centered emission . Nanomaterials 10 : 261 .
- Hu , X.D. , Shan , B.Q. , Tao , R. et al. ( 2021 ). Interfacial hydroxyl promotes the reduction of 4-nitrophenol by Ag-based catalysts confined in dendritic mesoporous silica nanospheres . J. Phys. Chem. 125 : 2446 – 2453 .
- Shan , B.Q. , Zhou , J.F. , Ding , M. et al. ( 2021 ). Surface electronic states mediate concerted electron and proton transfer at metal nanoscale interfaces for catalytic hydride reduction of –NO 2 to –NH 2 . Phys. Chem. Chem. Phys. 23 : 12950 – 12957 .
- Ding , M. , Shan , B.Q. , Peng , B. et al. ( 2022 ). Dynamic Pt–OH − ·H 2 O–Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface . Phys. Chem. Chem. Phys. 24 : 7923 – 7936 .
- Zheng , L.X. , Peng , B. , Zhou , J.F. et al. ( 2022 ). High efficient and stable thiol-modified dendritic mesoporous silica nanospheres supported gold catalysts for gas-phase selective oxidation of benzyl alcohol with ultra-long lifetime . Microporous Mesoporous Mater. 342 : 112140 .
- Fihri , A. , Cha , D. , Bouhrara , M. et al. ( 2012 ). Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions . ChemSusChem 5 : 85 – 89 .
- Fihri , A. , Bouhrara , M. , Patil , U. et al. ( 2012 ). Fibrous nano-silica supported ruthenium (KCC-1/Ru): a sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime . ACS Catal. 2 : 1425 – 1431 .
- Wang , X. , Xuan , X.N. , Wang , Y.B. et al. ( 2021 ). Nano-Au-modified TiO 2 grown on dendritic porous silica particles for enhanced CO 2 photoreduction . Microporous Mesoporous Mater. 310 : 110635 .
- Xuan , X.N. , Tu , S.C. , Yu , H.J. et al. ( 2019 ). Size-dependent selectivity and activity of CO 2 photoreduction over black nano-titanias grown on dendritic porous silica particles . Appl. Catal. B Environ. 255 : 117768 .
- Hoffmann , R. ( 1971 ). Interaction of orbitals through space and through bonds . Acc. Chem. Res. 4 : 1 – 9 .
- Tao , R. , Shan , B.Q. , Sun , H.D. et al. ( 2021 ). Surface molecule manipulated Pt/TiO 2 catalysts for selective hydrogenation of cinnamaldehyde . J. Phys. Chem. C 125 : 13304 – 13312 .
- Yang , T.Q. , Hu , X.D. , Shan , B.Q. et al. ( 2021 ). Caged structural water molecules emit tunable brighter colors by topological excitation . Nanoscale 13 : 15058 – 15066 .
- Zhou , J.F. , Yang , T.Q. , Peng , B. et al. ( 2021 ). Structural water molecules confined in soft and hard nanocavities as bright color emitters . ACS Phys. Chem. Au 2 : 47 – 58 .
- Wang , P.Y. , Zhou , J.F. , Chen , H. et al. ( 2022 ). Activation of H 2 O tailored by interfacial electronic states at a nanoscale interface for enhanced electrocatalytic hydrogen evolution . JACS Au 2 : 1457 – 1471 .
- Medford , A.J. , Vojvodic , A. , Hummelshøj , J.S. et al. ( 2015 ). From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis . J. Catal. 328 : 36 – 42 .