Hybrid 1D Semiconducting ZnO and GaN Nanostructures for Light-Emitting Devices
Vinod Kumar
1 Dambi Dollo University, College of Natural and Computational Science, Department of Physics, Dambi Dollo, P.O. Box 260, Ethiopia
Search for more papers by this authorHabtamu F. Etefa
1 Dambi Dollo University, College of Natural and Computational Science, Department of Physics, Dambi Dollo, P.O. Box 260, Ethiopia
Search for more papers by this authorMulugeta T. Efa
2 Dambi Dollo University, College of Natural and Computational Science, Department of Chemistry, Dambi Dollo, P.O. Box 260, , Ethiopia
Search for more papers by this authorLeta T. Jule
1 Dambi Dollo University, College of Natural and Computational Science, Department of Physics, Dambi Dollo, P.O. Box 260, Ethiopia
Search for more papers by this authorVinod Kumar
1 Dambi Dollo University, College of Natural and Computational Science, Department of Physics, Dambi Dollo, P.O. Box 260, Ethiopia
Search for more papers by this authorHabtamu F. Etefa
1 Dambi Dollo University, College of Natural and Computational Science, Department of Physics, Dambi Dollo, P.O. Box 260, Ethiopia
Search for more papers by this authorMulugeta T. Efa
2 Dambi Dollo University, College of Natural and Computational Science, Department of Chemistry, Dambi Dollo, P.O. Box 260, , Ethiopia
Search for more papers by this authorLeta T. Jule
1 Dambi Dollo University, College of Natural and Computational Science, Department of Physics, Dambi Dollo, P.O. Box 260, Ethiopia
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
One-dimensional (1D) semiconductor is very useful for the advanced hybrid devices for light emitting. Zinc oxide (ZnO) is a broadly reported semiconductor due to its stability, wide bandgap, and electrical and optical properties, which make it suitable for different applications. Lot of fabrication techniques are reported for the synthesis of ZnO nanostructures. Most of these synthesis techniques are based on the solution processes. While, there is an enormous increase in the surface-to-volume ratio for nanoparticles (NPs) with respect to the bulk sample. Other than this, the number of grain boundaries is also high. There is a considerable reduction in the number of grain boundaries in the 1D nanostructure compared to the other NPs. A brief summary of several synthesis techniques used for the production of 1D nanostructures is provided in this chapter. The capability to tune the shape as well as the size of these 1D nanostructures formulates them for numerous optoelectronic devices like diodes, light-emitting diodes (LEDs), and solar cells. The role of hybrid 1D structure on the performance of LEDs is also compared in this chapter.
References
- Liu , W. , Greytak , A.B. , and Lee , J. ( 2010 ). Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole based random copolymer ligand . J. Am. Chem. Soc. 132 ( 2 ): 472 – 483 .
- Hoshino , A. , Fujioka , K. , and Oku , T. ( 2004 ). Quantum dots targeted to the assigned organelle in living cells . Microbiol. Immunol. 48 ( 12 ): 985 – 994 .
- Weintraub , B. , Zhou , Z. , Li , Y. , and Deng , Y. ( 2010 ). Solution synthesis of one-dimensional ZnO nanomaterials and their applications . Nanoscale 2 ( 9 ): 1573 – 1587 .
- Xia , Y. , Yang , P. , Sun , Y. et al. ( 2003 ). One-dimensional nanostructures: synthesis, characterization, and applications . Adv. Mater. 15 ( 5 ): 353 – 389 .
- Yi , G.C. , Wang , C. , and Park , W.I. ( 2005 ). ZnO nanorods: synthesis, characterization and applications . Semicond. Sci. Technol. 20 : S22 – S34 .
- Zhang , Y. , Ram , M.K. , Stefanakos , E.K. , and Goswami , D.Y. ( 2012 ). Synthesis, characterization, and applications of ZnO nanowires . J. Nanomater. 624520 , 22 pages, doi: https://doi.org/10.1155/2012/624520 .
- Wang , Z.L. ( 2009 ). Ten years' venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications . Chin. Sci. Bull. 54 ( 22 ): 4021 – 4034 .
- ÖzgÜr , Ü. , Alivov , Y.I. , Liu , C. et al. ( 2005 ). A comprehensive review of ZnO materials and devices . J. Appl. Phys. 98 : 041301 .
- Venkatesh , S. , Franklin , J. , Ryan , M. et al. ( 2015 ). Defect band mediated ferromagnetism in Gd-doped ZnO thin films . J. Appl. Phys. 117 : 013913 .
- Aravindh , S.A. , Schwingenschloegl , U. , and Roqan , I.S. ( 2014 ). Ferromagnetism in Gd doped ZnO nanowires: a first principles study . J. Appl. Phys. 116 : 233906 .
- Flemban , T.H. , Sequeira , M. , Zhang , Z. et al. ( 2016 ). Identifying the influence of the intrinsic defects in Gd doped ZnO thin-films . J. Appl. Phys. 119 : 065301 .
- Bantounas , I. , Singaravelu , V. , Roqan , I.S. , and SchwingenschlÖgl , U. ( 2014 ). Structural and magnetic properties of Gd doped ZnO . J. Mater. Chem. C 2 : 10331 – 10336 .
- Zhang , Z. , SchwingenschlÖgl , U. , and Roqan , I.S. ( 2014 ). Possible mechanism for d0 ferromagnetism mediated by intrinsic defects . RSC Adv. 4 : 50759 – 50764 .
- Vinod Kumar , O.M. , Ntwaeaborwa , T. , Soga , V.D. , and Swart , H.C. ( 2017 ). Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cell . ACS Photonics 4 ( 11 ): 2613 – 2637 .
-
Kurin , S.Y.
,
Usikov , A.S.
,
Papchenko , B.P.
et al. (
2016
).
The efficiency of GaN/AlGaN p-n heterostructures in UV spectral range
.
J. Phys. Conf. Ser.
741
:
012107
.
10.1088/1742-6596/741/1/012107 Google Scholar
- Hirayama , H. , Fujikawa , S. , and Kamata , N. ( 2015 ). Recent progress in AlGaN based deep UV LEDs . Electron. Commun. Jpn. 98 : 1 – 8 .
- Alwadai , N. , Haque , M.A. , Mitra , S. et al. ( 2017 ). Roqan high performance ultraviolet to infrared broadband perovskite photodetectors achieved via inter−/intraband transitions . ACS Appl. Mater. Interfaces 9 : 37832 – 37838 .
- Flemban , T.H. , Haque , M.A. , Ajia , I. et al. ( 2017 ). A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity . ACS Appl. Mater. Interfaces 9 : 37120 – 37127 .
- Flemban , T.H. , Singaravelu , V. , Devi , A.A.S. , and Roqan , I.S. ( 2015 ). Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer . RSC Adv. 5 : 94670 – 94678 .
- Rahman , W. , Garain , S. , Sultana , A. et al. ( 2018 ). Self powered piezoelectric nanogenerator based on wurtzite ZnO nanoparticles for energy harvesting application . Mater. Today Proc. 5 : 9826 – 9830 .
- Jha , S. , Qian , J.C. , Kutsay , O. et al. ( 2011 ). Violet blue LEDs based on p-GaN/n-ZnO nanorods and their stability . Nanotechnology 22 : 245202 .
- Sadaf , J. , Israr , M. , Kishwar , S. et al. ( 2011 ). Forward and reverse biased electroluminescence behavior of chemically fabricated ZnO nanotubes/GaN interface . Semicond. Sci. Technol. 26 : 075003 .
- Zhang , L. , Li , Q. , Shang , L. et al. ( 2012 ). Electroluminescence from n-ZnO:Ga/p-GaN heterojunction light emitting diodes with different interfacial layers . J. Phys. D: Appl. Phys. 45 : 485103 .
- Ren , X. , Zhang , X. , Liu , N. et al. ( 2015 ). White light emitting diode from Sb-doped p-ZnO nanowire arrays/n-GaN film . Adv. Funct. Mater. 25 : 2182 – 2188 .
- Zhao , W. , Xiong , X. , Han , Y. et al. ( 2017 ). Fe-doped p-ZnO nanostructures/n-GaN heterojunction for “blue free” orange light emitting diodes . Adv. Opt. Mater. 5 : 1700146 .
- Zhang , X. , Li , L. , Su , J. et al. ( 2014 ). Bandgap engineering of Ga x Zn 1-x O nanowire arrays for wavelength-tunable light-emitting diodes . Laser Photonics Rev. 8 : 429 – 435 .
- Gomez , J.L. and Tigli , O. ( 2013 ). Zinc oxide nanostructures: from growth to application . J. Mater. Sci. 48 : 612 – 624 .
- Soci , C. , Zhang , A. , Xiang , B. et al. ( 2007 ). ZnO nanowire UV photodetectors with high internal gain . Nano Lett. 7 : 1003 – 1009 .
- Fang , F. , Zhao , D.X. , Zhang , J.Y. et al. ( 2007 ). Growth of well aligned ZnO nanowire arrays on Si substrate . Nanotechnology 18 : 235604 .
- Park , G.C. , Hwang , S.M. , Lee , S.M. et al. ( 2014 ). Hydrothermally grown in-doped ZnO nanorods on p-GaN films for color tunable heterojunction light emitting diodes . Sci. Rep. 5 : 10410 .
- Kim , K.S. , Jeong , H. , Jeong , M.S. , and Jung , G.Y. ( 2010 ). Polymer templated hydrothermal growth of vertically aligned single crystal ZnO nanorods and morphological transformations using structural polarity . Adv. Funct. Mater. 20 : 3055 – 3063 .
- Wang , W.Z. , Zeng , B.Q. , Yang , J. et al. ( 2006 ). Aligned ultralong ZnO nanobelts and their enhanced field emission . Adv. Mater. 18 : 3275 – 3278 .
- Yang , J. , Liu , G. , Lu , J. et al. ( 2007 ). Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate . Appl. Phys. Lett. 90 : 103109 .
- Wei , A. , Sun , X.W. , Xu , C.X. et al. ( 2006 ). Stable field emission from hydrothermally grown ZnO nanotubes . Appl. Phys. Lett. 88 : 213102 .
- Xing , Y.J. , Xi , Z.H. , Xue , Z.Q. et al. ( 2003 ). Optical properties of the ZnO nanotubes synthesized via vapor phase growth . Appl. Phys. Lett. 83 : 1689 – 1691 .
- Alwadai , N. , Ajia , I.A. , Janjua , B. et al. ( 2019 ). Catalyst free vertical ZnO nanotube array grown on p-GaN for UV light emitting devices . ACS Appl. Mater. Interfaces 11 : 27989 – 27996 .
- Ma , S. and Kitai , A.H. ( 2017 ). ZnO nanowire growth by chemical vapor deposition with spatially controlled density on Zn 2 GeO 4 :Mn polycrystalline substrates . Mater. Res. Express 4 : 065012 .
- Kim , D.C. , Han , W.S. , Kong , B.H. et al. ( 2007 ). Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition . Physica B 401-402 : 386 – 390 .
- Sun , X.W. , Ling , B. , Zhao , J.L. et al. ( 2009 ). Ultraviolet emission from a ZnO rod homojunction light emitting diode . Appl. Phys. Lett. 95 : 133124 .
- Liu , W.Z. , Xu , H.Y. , Wang , C.L. et al. ( 2013 ). Enhanced ultraviolet emission and improved spatial distribution uniformity of ZnO nanorod array light-emitting diodes via Ag nanoparticles decoration . Nanoscale 5 : 8634 – 8639 .
- Dai , J. , Xu , C.X. , and Sun , X.W. ( 2011 ). ZnO-microrod/p-GaN heterostructured whispering gallery mode microlaser diodes . Adv. Mater. 23 : 4115 .
- Vinod Kumar , H.C. , Swart , O.M. , Ntwaeaborwa , R.E. et al. ( 2013 ). Origin of the red emission in zinc oxide nanophosphors . Mater. Lett. 101 : 57 .
- Dai , J. , Ji , Y. , Xu , C.X. et al. ( 2011 ). White light emission from CdTe quantum dots decorated n-ZnO nanorods/p-GaN light-emitting diodes . Appl. Phys. Lett. 99 : 063112 .
- Lu , J. , Shi , Z. , Wang , Y. et al. ( 2016 ). Plasmon enhanced electrically light emitting from ZnO nanorod arrays/ p -GaN heterostructure devices . Sci. Rep. 6 : 25645 .
- Zhang , Y. , Tan , Y.W. , Stormer , H.L. , and Kim , P. ( 2005 ). Experimental observation of the quantum hall effect and berry's phase in graphene . Nature 438 : 201 .
- Choi , D. , Choi , M.Y. , Choi , W.M. et al. ( 2010 ). Fully rollable transparent nanogenerators based on graphene electrodes . Adv. Mater. 22 : 2187 – 2192 .
- Nair , R.R. , Blake , P. , Grigorenko , A.N. et al. ( 2008 ). Fine structure constant defines visual transparency of graphene . Science 320 : 1308 .
- Lee , C. , Wei , X. , Kysar , J.W. , and Hone , J. ( 2008 ). Measurement of the elastic properties and intrinsic strength of monolayer graphene . Science 321 : 385 – 388 .
- Pang , S. , Hernandez , Y. , Feng , X. , and MÜllen , K. ( 2011 ). Graphene as transparent electrode material for organic electronics . Adv. Mater. 23 : 2779 – 2795 .
- Zhang , C. , Qiu , Y. , Liu , W. et al. ( 2019 ). Improved near-UV electroluminescence of ZnO nanorod array LEDs by coupling with a graphene plasmon layer . Nanophotonics 8 ( 12 ): 2203 – 2213 .
- Lin , F. , Liao , X. , Liu , C.P. et al. ( 2020 ). Graphene/ZnO nanowire/p-GaN vertical junction for a high performance nanoscale light source, ACS . Omega 5 : 4133 – 4138 .