Introduction and Types of Semiconducting Hybrid Nanostructures for Optoelectronic Devices
Byrappanapalya S. Ravikumar
1 M. S. Ramaiah University of Applied Sciences, Department of Physics, Faculty of Mathematical and Physical Sciences, Peenya 4th Phase, Bengaluru, 560058 India
Search for more papers by this authorBaishali Garai
2 Dayananda Sagar University, Department of Physics, Bengaluru, 560068 India
Search for more papers by this authorByrappanapalya S. Ravikumar
1 M. S. Ramaiah University of Applied Sciences, Department of Physics, Faculty of Mathematical and Physical Sciences, Peenya 4th Phase, Bengaluru, 560058 India
Search for more papers by this authorBaishali Garai
2 Dayananda Sagar University, Department of Physics, Bengaluru, 560068 India
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
One-dimensional (1D) nanostructures like nanowires (NWs), nanobelts, and nanotubes have attracted several researches interest around the globe due to their unique properties and potential applications in optoelectronics. Semiconductor nanostructures like quantum wires when mixed with 2D materials can significantly tune and enhance light interaction with the semiconductor material. These have a significant effect on the functionalities of optoelectronic devices built on 1D nanostructure like UV detectors light-emitting diodes (LEDs), nanolasers, and single-NW solar cells. In this chapter, the authors will systematically introduce the types of semiconducting nanostructures based on the nature of the junction within the structure. This will be followed by a detailed discussion on the synthesis techniques for these hybrid nanostructures and their growth mechanism.
A major portion of the chapter will encompass the device functionalities of nanoscale optoelectronic devices made on 1D hybrid nanostructures including UV detectors and single-NW solar cells. The authors would bring out the uniqueness of these devices that are achieved due to the structure and morphology of the hybrid nanostructures. The chapter will end with a discussion about the most recent developments in this field, and the future studies need to be done to better understand 1D hybrid nanostructures and the relationship between their structure and properties.
References
- Razeghi et al. ( 1996 ). Semiconductor ultraviolet detectors . J. Appl. Phys. 79 ( 10 ): 7433 – 7473 .
- Taniyasu et al. ( 2006 ). An aluminium nitride light-emitting diode with a wavelength of 210 nanometres . Nature 441 ( 7091 ): 325 – 328 .
- Wang , L.K. et al. ( 2009 ). Single-crystalline cubic Mg-ZnO films and their application in deep-ultraviolet optoelectronic devices . Appl. Phys. Lett. 95 ( 13 ): 131113 .
- Tian et al. ( 2015 ). Nanoscale ultraviolet photodetectors based on one dimensional metal oxide nanostructures . Nano Res. 8 ( 2 ): 382 – 405 .
- Monroy et al. ( 2003 ). Wide-bandgap semiconductor ultraviolet photodetectors . Semicond. Sci. Technol. 18 ( 4 ): R33 .
- Kind et al. ( 2002 ). Nanowire ultraviolet photodetectors and optical switches . Adv. Mater. 14 ( 2 ): 158 – 160 .
- McDonald et al. ( 2005 ). Solution-processed PbS quantum dot infrared photodetectors and photovoltaics . Nat. Mater. 4 ( 2 ): 138 – 142 .
- Fang et al. ( 2009 ). Single-crystalline ZnS nanobelts as ultraviolet-light sensors . Adv. Mater. 21 ( 20 ): 2034 – 2039 .
- Soci et al. ( 2007 ). ZnO nanowire UV photodetectors with high internal gain . Nano Lett. 7 ( 4 ): 1003 – 1009 .
- Huang et al. ( 2012 ). Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays . ACS Nano. 6 ( 8 ): 7333 – 7339 .
- Wu et al. ( 2012 ). Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices . ACS Nano. 6 ( 7 ): 6231 – 6235 .
- Zhou et al. ( 2009 ). Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization . Appl. Phys. Lett. 94 ( 19 ): 191103 .
- Gedamu et al. ( 2014 ). Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors . Adv. Mater. 26 ( 10 ): 1541 – 1550 .
- Hou et al. ( 2013 ). SnO 2 -microtube-assembled cloth for fully flexible self-powered photodetector nanosystems . Nanoscale 5 ( 17 ): 7831 – 7837 .
- Pescaglini et al. ( 2014 ). Hot-electron injection in Au nanorod–ZnO nanowire hybrid device for near-infrared photodetection . Nano Lett. 14 ( 11 ): 6202 – 6209 .
- Lee et al. ( 2012 ). Graphene–nanowire hybrid structures for high-performance photoconductive devices . J. Mater. Chem. 22 ( 17 ): 8372 – 8376 .
- Hong et al. ( 2014 ). Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array . ACS Appl. Mater. Interfaces 6 ( 23 ): 20887 – 20894 .
- Zhou et al. ( 2014 ). Ultrahigh sensitivity and gain white light photodetector based on GaTe/Sn: CdS nanoflake/nanowire heterostructures . Nanotechnology 25 ( 44 ): 445202 .
- Chen et al. ( 2010 ). ZnS branched architectures as optoelectronic devices and field emitters . Adv. Mater. 22 ( 21 ): 2376 – 2380 .
- Yang et al. ( 2007 ). Single-crystalline branched zinc phosphide nanostructures: synthesis, properties and optoelectronic devices . Nano Lett. 7 ( 2 ): 269 – 275 .
- Wu et al. ( 2004 ). Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures . Nature 430 ( 6995 ): 61 – 65 .
- Perera et al. ( 2012 ). Hydrothermal synthesis of graphene-TiO 2 nanotube composites with enhanced photocatalytic activity . ACS Catal. 2 ( 6 ): 949 – 956 .
- Lu et al. ( 2010 ). Nanoelectronics from the bottom up . In: Nanoscience and Technology: A Collection of Reviews from Nature Journals (ed. V. Dusastre ), 137 – 146 . Nature Publishing Group .
- Park et al. ( 2013 ). Graphene cathode-based ZnO nanowire hybrid solar cells . Nano Lett. 13 ( 1 ): 233 – 239 .
- Wang et al. ( 2015 ). Simultaneous electrochemical reduction and delamination of graphene oxide films . ACS Nano. 9 ( 9 ): 8737 – 8743 .
- Li et al. ( 2011 ). MoS 2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction . J. Am. Chem. Soc. 133 ( 19 ): 7296 – 7299 .
- Reddy et al. ( 2012 ). Hybrid nanostructures for energy storage applications . Adv. Mater. 24 ( 37 ): 5045 – 5064 .
- Tian et al. ( 2007 ). Coaxial silicon nanowires as solar cells and nanoelectronic power sources . Nature 449 ( 7164 ): 885 – 889 .
- Han et al. ( 2015 ). Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance . Adv. Funct. Mater. 25 ( 2 ): 221 – 229 .
- Wang et al. ( 2014 ). Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity . Nanoscale 6 ( 21 ): 12340 – 12344 .
- Bao et al. ( 2011 ). Flexible Zn 2 SnO 4 /MnO 2 core/shell nanocable carbon microfiber hybrid composites for high-performance supercapacitor electrodes . Nano Lett. 11 ( 3 ): 1215 – 1220 .
- Geim , K. et al. ( 2013 ). Van der Waals heterostructures , PERSPECTIVE. Nature 499 : 419 Macmillan Publishers Limited.
- Cai et al. ( 2018 ). Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures . Chem. Rev. 118 ( 13 ): 6091 – 6133 .
- Du , N. et al. ( 2012 ). One-dimensional hybrid nanostructures: synthesis via layer-by-layer assembly and applications . Nanoscale 18 : 5517 – 5526 .
- Wang , X. , Song , P.L. , Ryou , J.H. et al. ( 2005 ). Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al 0.5 Ga 0. 5 N substrates . J. Am. Chem. Soc. 21 : 7920 – 7923 .
- Kovtyukhova , N.I. et al. ( 2004 ). Coaxially gated in-wire thin-film transistors made by template assembly . J. Am. Chem. Soc. 40 : 1273 – 1279 .
- Chen , J.S. et al. ( 2018 ). 0D–2D and 1D–2D semiconductor hybrids composed of all inorganic perovskite nanocrystals and single layer graphene with improved light harvesting . Part. Part. Syst. Char. 2 : 1700 – 1310 .
-
Zhu , R.
et al. (
2018
).
Growth of uniform nanowires with orientation control
. In:
Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing; Mechanical Engineering Series
(ed.
F.A. Kulacki
).
Cham, Switzerland
:
Springer
.
10.1007/978-3-319-70038-0_2 Google Scholar
- Hu , H. et al. ( 2007 ). Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale . Mater. Chem. Phys. 106 : 58 – 62 .
- Podrezova , L.V. et al. ( 2013 ). Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis . Appl. Phys. A Mater. Sci. Process. 113 : 623 – 632 .
- Liu , B. et al. ( 2003 ). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm . J. Am. Chem. Soc. 125 ( 15 ): 4430 – 4431 .
- An , G. et al. ( 2011 ). CO 2 -mediated synthesis of ZnO nanorods and their application in sensing ethanol vapor . J. Nanosci. Nanotechnol. 11 : 1252 – 1258 .
- Kim , J.Y. et al. ( 2011 ). The characteristic of the ZnO nanowire morphology grown by the hydrothermal method on various surface-treated seed layers . Mater. Lett. 65 ( 8 ): 1161 – 1164 .
- Song , J. , S. et al. ( 2009 ). Selective growth of vertical ZnO nanowires with the control of hydrothermal synthesis and nano-imprint technology . J. Nanosci. Nanotechnol. 9 ( 6 ): 3909 – 3913 .
- Chevalier-César , C. et al. ( 2014 ). Growth mechanism studies of ZnO nanowire arrays via hydrothermal method . Appl. Phys. A Mater. Sci. Process. 115 : 953 – 960 .
- Amin , G. et al. ( 2011 ). Influence of PH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method . J. Nanomater. 2011 .
- Akgun , M.C. et al. ( 2012 ). Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt . J. Mater. Res. 27 : 1445 – 1451 .
- Yang , W. et al. ( 2011 ). Effect of growth time on morphology and photovoltaic properties of ZnO nanowire Array films . Rare Met. 30 : 676 – 680 .
- Tian , W. et al. ( 2014 ). Adv. Mater. 26 : 3088 – 3093 .
- Zhang , H.F. et al. ( 2012 ). IEEE Elec. Device Lett. 33 : 83 – 85 .
- Fang , X.S. , Hu , L.F. , Huo , K.F. et al. ( 2011 ). Adv. Funct. Mater. 21 : 3907 – 3915 .
- Sugunan , A. , H. C. et al. ( 2006 ). Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine . J. Sol-Gel Sci. Technol. 39 ( 1 ): 49 – 56 .
- Ladanov , M. et al. ( 2011 ). Structure and opto-electrochemical properties of ZnO nanowires grown on n-Si substrate . Langmuir 27 ( 14 ): 9012 – 9017 .
- Yu , J. et al. ( 2012 ). Size-selected growth of transparent well-aligned ZnO nanowire arrays . Nanoscale Res. Lett. 7 : 1 – 6 .
- Muchuweni , E. et al. ( 2017 ). Hydrothermal synthesis of ZnO nanowires on Rf sputtered Ga and Al Co-doped ZnO thin films for solar cell application . J. Alloys Compd. 721 : 45 – 54 .
- Gerbreders , V. et al. ( 2020 ). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change . Cryst. Eng. Comm. 22 : 1346 – 1358 .
- Cao , B. et al. ( 2008 ). From ZnO nanorods to nanoplates: chemical Bath deposition growth and surface-related emissions . J. Phys. Chem. C 112 : 680 – 685 .
-
Rakhsha
et al. (
2019
).
Ag and Cu doped ZnO nanowires: a PH-controlled synthesis via chemical bath deposition
.
Materialia
5
:
100212
.
10.1016/j.mtla.2019.100212 Google Scholar
- Lee , D. et al. ( 2020 ). Phase-dependent gas sensitivity of MoS 2 chemical sensors investigated with phase-locked MoS 2 . Nanotechnology 31 225504 .
- Singh , E. et al. ( 2019 ). Flexible molybdenum disulfide (MoS 2 ) atomic layers for wearable electronics and optoelectronics . ACS Appl. Mater. Interfaces 11 : 11061 – 11105 .
- Romanov , R.I. et al. ( 2019 ). Synthesis of large area two-dimensional MoS 2 films by sulfurization of atomic layer deposited MoO 3 thin film for nanoelectronic applications . ACS Appl. Nano Mater. 2 : 7521 – 7531 .
- Yang , P. et al. ( 2019 ). Thickness tunable wedding-cake-like MoS 2 flakes for high-performance optoelectronics . ACS Nano. 13 : 3649 – 3658 .
- Li , F. et al. ( 2020 ). High-performance optoelectronic devices based on van der Waals vertical MoS 2 /MoSe 2 heterostructures . Nano Res. 13 : 1053 – 1059 .
- Sarma , S. et al. ( 2019 ). Layer-by-layer MoS 2 : GO composite thin films for optoelectronics device applications . Appl. Surf. Sci. 479 : 1118 – 1123 .
- Santhosh , A.L. et al. ( 2019 ). Exfoliated MoS 2 as electrode for all-solid-state rechargeable lithium-ion batteries . J. Phys. Chem. C 123 : 12126 – 12134 .
- Palleschi , S. et al. ( 2020 ). On the role of nano-confined water at the 2D/SiO 2 interface in layer number engineering of exfoliated MoS 2 via thermal annealing . 2D Mater. 7 : 025001 .
- Nguyen , V.T. et al. ( 2020 ). Plasma-induced exfoliation provides onion-like graphene-surrounded MoS 2 nanosheets for a highly efficient hydrogen evolution reaction . ACS Appl. Mater. Interfaces 12 : 11533 – 11542 .
- Zheng , X. et al. ( 2018 ). Hydrothermal synthesis of MoS 2 with different morphology and its performance in thermal battery . J. Power Sources 395 : 318 – 327 .
- Najmaei , S. et al. ( 2013 ). Vapor phase growth and grain boundary structure of molybdenum disulphide atomic layers . Nat. Mater. 12 : 754 – 759 .
- Wang , S. et al. ( 2014 ). Shape evolution of monolayer MoS 2 crystals grown by chemical vapor deposition . Chem. Mater. 26 : 6371 – 6379 .
- Zafar , A. et al. Probing the intrinsic optical quality of CVD grown MoS 2 . Nano Res. 10 : 1608 – 1617 .
- Jeon , J. et al. ( 2015 , 2017). Layer-controlled CVD growth of large-area two-dimensional MoS 2 films . Nanoscale 7 : 1688 – 1695 .
- Yu , H. et al. ( 2017 ). Wafer-scale growth and transfer of highly-oriented monolayer MoS 2 continuous films . ACS nano 11 : 12001 – 12007 .
- Ling et al. ( 2014 ). Role of the seeding promoter in MoS 2 growth by chemical vapor deposition . Nano Lett. 14 ( 2 ): 464 – 472 .
- Sirota , B. et al. ( 2019 ). Room temperature magnetron sputtering and laser annealing of ultrathin MoS 2 for flexible transistors . Vacuum 160 : 133 – 138 .
- Zhan , L. et al. ( 2017 ). Centimeter-scale nearly single-crystal monolayer MoS 2 via self-limiting vapor deposition epitaxy . J. Phys. Chem. C 121 : 4703 – 4707 .
- Ji , Q. et al. ( 2016 ). Morphological engineering of CVD-grown transition metal dichalcogenides for efficient electrochemical hydrogen evolution . Adv. Mater. 28 : 6207 – 6212 .
- Ye , G. et al. ( 2016 ). Defects engineered monolayer MoS 2 for improved hydrogen evolution reaction . Nano Lett. 16 : 1097 – 1103 .
- Bhattacharyya , S. et al. ( 2014 ). Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS 2 . Nanotechnology 25 : 465701 .
- Liu , H. et al. ( 2017 ). Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition . Nano Res. 10 : 643 – 651 .
- Cao , Y. et al. ( 2015 ). Influences of carrier gas flow rate on the morphologies of MoS 2 flakes . Chem. Phys. Lett. 631-632 : 30 – 33 .
- Kumar , N. et al. ( 2018 ). Growth of highly crystalline and large scale monolayer MoS 2 by CVD: the role of substrate position . Cryst. Res. Technol. 53 : 1800002 .
- Cunningham et al. ( 2016 ). Charge trapping and exciton dynamics in large-area CVD grown MoS 2 . J. Phys. Chem. C 120 ( 10 ): 5819 – 5826 .
- Chen , F. et al. ( 2017 ). Temperature-dependent two-dimensional transition metal dichalcogenide heterostructures: controlled synthesis and their properties . ACS Appl. Mater. Interfaces 9 : 30821 – 30831 .
- Chen , F. et al. ( 2018 ). The effect of the experimental parameters on the growth of MoS 2 flakes . Cryst. Eng. Comm. 20 : 4823 – 4830 .
- Rajan , G. et al. ( 2016 ). Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers . ACS Nano. 10 ( 4 ): 4330 – 4344 .
- Zhu et al. ( 2021 ). Effect of precursor ratio on the morphological and optical properties of CVD-grown monolayer MoS 2 nanosheets . Mater. Res. Express 8 ( 4 ): 045008 .
- Der Zande , V. et al. ( 2013 ). Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide . Nat. Mater. 12 ( 6 ): 554 – 561 .
- Han , S. et al. ( 2015 ). Morphology evolution of MoS 2 nanorods grown by chemical vapor deposition . J. Cryst. Growth 430 ( 15 ): 1 – 6 .
- Tian , Y. et al. ( 2004 ). Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods . Mater. Chem. Phys. 87 : 87 – 90 .
- Bi , N. et al. ( 2017 ). Control of ZnO nanowire growth and optical properties in a vapor deposition process . J. Mater. Sci. Technol. 33 : 850 – 855 .
- Bhutto , W.A. et al. ( 2019 ). Controlled growth of zinc oxide nanowire arrays by chemical vapor deposition (CVD) method . Int. J. Comput. Sci. Netw. Secur. 19 : 135 – 141 .
- Li , C. et al. ( 2008 ). Effect of seed layer on structural properties of ZnO nanorod arrays grown by vapor-phase transport . J. Phys. Chem. C 112 : 990 – 995 .
- Serrano et al. ( 2017 ). Effect of the seed layer on the growth and orientation of the ZnO nanowires: consequence on structural and optical properties . Vacuum 146 : 509516 .
- Li , D. et al. ( 2020 ). Application of graphene-based materials for detection of nitrate and nitrite in water-a review . Sensors 20 : 54 .
- Gómez , E. et al. ( 2013 ). Rev. Colomb. Mater. 5 : 177 – 184 .
- Kindalkar et al. ( 2019 ). Sol-gel synthesized spin coated GO: ZnO composite thin films: optical, structural and electrical studies . Mater. Res. Express 6 : 096435 .
- Yein et al. ( 2018 ). Enhancement of photocatalytic performance in sonochemical synthesized ZnO–rGO nanocomposites owing to effective interfacial interaction . Environ. Chem. Lett. 16 : 251 – 264 .
- Moqbel , R.A. et al. ( 2018 ). Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity . Mater. Res. Express 5 : 035050 .
- Adam , R.E. et al. ( 2019 ). Graphene based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities . RSC Adv. 9 : 30585 – 30598 .
- Yu , W. et al. ( 2017 ). Photocatalytic and electrochemical performance of three-dimensional reduced graphene oxide/WS 2 /Mg-doped ZnO composites . Appl. Surf. Sci. 400 : 129 – 138 .
- Samal , A. et al. ( 2018 ). Transfiguring UV light active “metal oxides” to visible light active photocatayst by reduced graphene oxide hypostatization . Catal. Today 300 : 124 – 135 .
- Jin , X. et al. ( 2020 ). In-situ ionothermal precipitation of well-dispersed ZnO nanoparticles onto 2-dimension neat graphene sheets with excellent photocatalytic activity . J. Environ. Chem. Eng. 8 : 104030 .
- Chen et al. ( 2018 ). UV-assisted photochemical synthesis of reduced graphene oxide/ZnO nanowires composite for photoresponse enhancement in UV photodetectors . Nanomaterials 8 ( 1 ): 26 .
- Albiter et al. ( 2021 ). Synthesis, characterization, and photocatalytic performance of ZnO–graphene nanocomposites: a review . J. Compos. Sci. 5 ( 1 ): 4 .
- Shwetharani , R. et al. ( 2020 ). Photocatalytic semiconductor thin films for hydrogen production and environmental applications . Int. J. Hydrogen Energy 45 : 18289 – 18308 .
- Wojnarowicz , J. et al. ( 2020 ). A review of microwave synthesis of zinc oxide nanomaterials: reactants process parameters and morphologies . Nanomaterials 10 : 1086 .
- Gautam , S. et al. ( 2020 ). Metal oxides and metal organic frameworks for the photocatalytic degradation: a review . J. Environ. Chem. Eng. 8 : 103726 .
- Neelgund et al. ( 2020 ). ZnO conjugated graphene: an efficient sunlight driven photocatalyst for degradation of organic dyes . Mater. Res. Bull. 129 : 110911 .
- Tuan , V. et al. ( 2020 ). In-situ hydrothermal fabrication and photocatalytic behavior of ZnO/reduced graphene oxide nanocomposites with varying graphene oxide concentrations . Mater. Sci. Semicond. Process. 115 : 105114 .
- Boukhoubza et al. ( 2020 ). Graphene oxide coated flower-shaped ZnO nanorods: optoelectronic properties . J. Alloys Compd. 831 : 154874 .
- Mahmud , R.A. et al. ( 2020 ). Graphene nanoplatelets with low defect density as a synergetic adsorbent and electron sink for ZnO in the photocatalytic degradation of methylene blue under UV–vis irradiation . Mater. Res. Bull. 128 : 110876 .
- Lee , K.S. et al. ( 2020 ). Inhibition of photoconversion activity in self-assembled ZnO-graphene quantum dots aggregated by 4-aminophenol used as a linker . Molecules 25 : 2802 .
- Kumaresan , N. et al. ( 2020 ). Synthesis of ZnO/RGO nanocomposites by wet impregnation method for photocatalytic performance against RhB dye and 4-chlorophenol under UV light irradiation . J. Mater. Sci. - Mater. Electron. 31 : 3361 – 3374 .
- Moussa , H. et al. ( 2016 ). ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis . Appl. Catal., B 185 : 11 – 21 .
- Wu , H. et al. ( 2020 ). Fabrication of ZnO-MoS 2 nanocomposite heterojunction arrays and their photoelectric properties . Micromachines 11 ( 2 ): 189 .
- Aldalbahi , A. et al. ( 2021 ). Two-step facile preparation of 2D MoS 2 /ZnO nanocomposite-junctions with enhanced photoelectric performance . Int. J. Photoenergy .
- Lee et al. ( 2017 ). Dimensional-hybrid structures of 2D materials with ZnO nanostructures via pH-mediated hydrothermal growth for flexible UV photodetectors . ACS Appl. Mater. Interfaces 9 ( 17 ): 15031 – 15037 .
-
Wu , J.Z.
et al. (
2021
).
Nanohybrid photodetectors
.
Adv. Photonics Res.
2
:
2100015
.
10.1002/adpr.202100015 Google Scholar
- Joon , Y. et al. ( 2021 ). One-dimensional semiconductor nanostructures grown on two-dimensional nanomaterials for flexible device applications . APL Mater. 9 : 060907 .
- Wua , J. et al. ( 2021 ). ZnO/graphene heterostructure nanohybrids for optoelectronics and sensors . J. Appl. Phys. 130 : 070905 .
- Boruah , B.D. et al. ( 2015 ). Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection . ACS Appl. Mater. Interfaces 7 ( 19 ): 10606 – 10611 .
- Manekkathodi , A. , Lu , M-Y. , Wang , C.W et al. ( 2010 ). Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics . Adv. Mater. 22 : 4059 – 4063 .
- Liu , K. et al. ( 2010 ). Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles . J. Phys. Chem. C 114 : 19835 .
- Li , H. , Wang , X. , Zhu , X. et al. ( 2018 ). Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures . Chem. Soc. Rev. 47 ( 20 ).