Recent Advances in Semiconducting Nanowires-Based Hybrid Structures for Solar Cell Application
Jaydip Bhaliya
1 ITM SLS Baroda University, Department of Chemistry, School of Science, Vadodara, 391510 Gujarat, India
Search for more papers by this authorMeera R. Popaliya
2 CVM University, Institute of Science & Technology for Advanced Studies & Research (ISTAR), Department of Industrial Chemistry, V.V. Nagar, Gujarat, 388120 India
Search for more papers by this authorGautam M. Patel
1 ITM SLS Baroda University, Department of Chemistry, School of Science, Vadodara, 391510 Gujarat, India
Search for more papers by this authorArvnabh Mishra
2 CVM University, Institute of Science & Technology for Advanced Studies & Research (ISTAR), Department of Industrial Chemistry, V.V. Nagar, Gujarat, 388120 India
Search for more papers by this authorVraj Shah
1 ITM SLS Baroda University, Department of Chemistry, School of Science, Vadodara, 391510 Gujarat, India
Search for more papers by this authorJaydip Bhaliya
1 ITM SLS Baroda University, Department of Chemistry, School of Science, Vadodara, 391510 Gujarat, India
Search for more papers by this authorMeera R. Popaliya
2 CVM University, Institute of Science & Technology for Advanced Studies & Research (ISTAR), Department of Industrial Chemistry, V.V. Nagar, Gujarat, 388120 India
Search for more papers by this authorGautam M. Patel
1 ITM SLS Baroda University, Department of Chemistry, School of Science, Vadodara, 391510 Gujarat, India
Search for more papers by this authorArvnabh Mishra
2 CVM University, Institute of Science & Technology for Advanced Studies & Research (ISTAR), Department of Industrial Chemistry, V.V. Nagar, Gujarat, 388120 India
Search for more papers by this authorVraj Shah
1 ITM SLS Baroda University, Department of Chemistry, School of Science, Vadodara, 391510 Gujarat, India
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
In the last few decades, renewable energy sources have become a good approach for the generation of energy sources without affecting any kind of pollution in the earth's atmosphere, in which the solar cell has become the best choice for an energy harvesting tool in the last few decades. Nowadays, conventional solar cells are fabricated using p–n junction-type semiconductors that are used for the manufacturing of solar panels. For the conventional solar cell, silicon-based materials are most commonly used in solar panels. But these pristine materials are not sufficient enough to produce the power conversion efficiency (PCE) in solar cells. Conventional solar cells have disadvantages in PCE, high manufacturing cost, low electron/ion transfer rate, high reflection of sunlight, and low photon absorption, making them less efficient for the generation of renewable energy sources. Recently, nanostructured-based materials have been researched and developed for the advanced management of photon absorption in thin films for solar cells. In which, 1D semiconductor nanowire materials have attracted a lot of attention for solar cells to improve PCE, cheaper, high electron/ion transfer, low refection, high photon absorption, etc. Semiconducting nanowire-based hybrid structures are most suitable for soar cells because they have a higher surface-to-volume ratio, lower dimensions, as well as a shorter diffusion length. This chapter emphasized the use of semiconducting nanowire hybrid structures for solar cells, including how they were made, how they were used, and how they were compared to other types of solar cells in terms of their PCE.
References
-
Thony , P.
(
2015
).
Semiconductor nanowires for solar cells
. In:
Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications
,
Woodhead Publishing Series in Electronic and Optical Materials
(ed.
J. Arbiol
and
Q. Xiong
),
411
–
439
.
10.1016/B978-1-78242-253-2.00015-3 Google Scholar
- Semiconductor|Definition, Examples, Types, Uses, Materials, Devices, & Facts|Britannica . https://www.britannica.com/science/semiconductor .
-
Materon , E.M.
,
Ibáñez-Redín , G.
,
Joshi , N.
et al. (
2020
).
Analytical detection of pesticides, pollutants, and pharmaceutical waste in the environment
. In:
Nanosensors for Environmental Applications. Environmental Chemistry for a Sustainable World
, vol.
43
(ed.
S. Kumar Tuteja
,
D. Arora
,
N. Dilbaghi
and
E. Lichtfouse
),
87
–
129
.
Cham
.
https://doi.org/10.1007/978-3-030-38101-1_3
:
Springer
.
10.1007/978-3-030-38101-1_3 Google Scholar
- Singh , A. , Salmi , Z. , Joshi , N. et al. ( 2013 ). Photo-induced synthesis of polypyrrole-silver nanocomposite films on N-(3-trimethoxysilylpropyl)pyrrole-modified biaxially oriented polyethylene terephthalate flexible substrates . RSC Adv. 3 ( 16 ): 5506 .
- Singh , A. , Salmi , Z. , Jha , P. et al. ( 2013 ). One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air–water interface by photopolymerization . RSC Adv. 3 ( 32 ): 13329 .
- Singh , A. , Salmi , Z. , Joshi , N. et al. ( 2013 ). Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors . RSC Adv. 3 ( 46 ): 24567 .
- Singh , A. , Kumar , A. , Kumar , A. et al. ( 2013 ). Bending stress induced improved chemiresistive gas sensing characteristics of flexible cobalt-phthalocyanine thin films . Appl. Phys. Lett. 102 ( 13 ): 132107 .
- Mekki , A. , Joshi , N. , Singh , A. et al. ( 2014 ). H 2 S sensing using in situ photo-polymerized polyaniline–silver nanocomposite films on flexible substrates . Org. Electron. 15 ( 1 ): 71 – 81 .
- Joshi , N. , Saxena , V. , Singh , A. et al. ( 2014 ). Flexible H 2 S sensor based on gold modified polycarbazole films . Sens. Actuators, B 200 : 227 – 234 .
- Kumar , A. , Joshi , N. , Samanta , S. et al. ( 2015 ). Room temperature detection of H 2 S by flexible gold–cobalt phthalocyanine heterojunction thin films . Sens. Actuators, B 206 : 653 – 662 .
- Joshi , N. , da Silva , L.F. , Jadhav , H. et al. ( 2016 ). One-step approach for preparing ozone gas sensors based on hierarchical NiCo 2 O 4 structures . RSC Adv. 6 ( 95 ): 92655 – 92662 .
- Gusain , A. , Joshi , N.J. , Varde , P.V. , and Aswal , D.K. ( 2017 ). Flexible NO gas sensor based on conducting polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) . Sens. Actuators, B 239 : 734 – 745 .
-
Bishnoi , A.
,
Kumar , S.
, and
Joshi , N.
(
2017
).
Wide-Angle X-ray Diffraction (WXRD)
. In:
Microscopy Methods in Nanomaterials Characterization
(ed.
S. Thomas
,
R. Thomas
,
A.K. Zachariah
and
R.K. Mishra
),
313
–
337
.
Elsevier
.
10.1016/B978-0-323-46141-2.00009-2 Google Scholar
- Joshi , N. , Hayasaka , T. , Liu , Y. et al. ( 2018 ). A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides . Microchim. Acta 185 ( 4 ): 213 .
-
Liu , H.
,
Chu , Y.
,
Liu , Y.
et al. (
2018
).
Selective sensing of chemical vapors using phase spectra detection on CVD graphene fet
. In:
2018 IEEE Micro Electro Mechanical Systems (MEMS)
,
210
–
213
.
10.1109/MEMSYS.2018.8346521 Google Scholar
- Joshi , N. , da Silva , L.F. , Jadhav , H.S. et al. ( 2018 ). Yolk-shelled ZnCo 2 O 4 microspheres: surface properties and gas sensing application . Sens. Actuators, B 257 : 906 – 915 .
- Liu , H. , Liu , Y. , Chu , Y. et al. ( 2018 ). AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift . Sens. Actuators, B 263 : 94 – 102 .
- Nie , J. , Wu , Y. , Huang , Q. et al. ( 2019 ). Dew point measurement using a carbon-based capacitive sensor with active temperature control . ACS Appl. Mater. Interfaces 11 ( 1 ): 1699 – 1705 .
- Salzmann , I. , Heimel , G. , Oehzelt , M. et al. ( 2016 ). Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules . Acc. Chem. Res. 49 ( 3 ): 370 – 378 .
- Sahoo , M.K. and Kale , P. ( 2019 ). Integration of silicon nanowires in solar cell structure for efficiency enhancement: a review . J. Mater. 5 ( 1 ): 34 – 48 .
-
Soga , T.
(
2006
).
Fundamentals of solar cell
.
Nanostruct. Mater. Solar Energy Convers.
3
–
43
.
10.1016/B978-044452844-5/50002-0 Google Scholar
- Nehra , M. , Dilbaghi , N. , Marrazza , G. et al. ( 2020 ). 1D semiconductor nanowires for energy conversion, harvesting and storage applications . Nano Energy 76 ( 104 ): 991 .
- Shockley , W. and Queisser , H.J. ( 1961 ). Detailed balance limit of efficiency of p-n junction solar cells . J. Appl. Phys. 32 ( 3 ): 510 – 519 .
- Li , H.M. , Lee , D.Y. , and Yoo , W.J. ( 2012 ). Optoelectronic performance of radial-junction Si nanopillar and nanohole solar cells . IEEE Trans. Electron Devices 59 ( 9 ): 2368 – 2374 .
- Wang , B. and Leu , P.W. ( 2012 ). Enhanced absorption in silicon nanocone arrays for photovoltaics . Nanotechnology 23 ( 19 ): 194003 .
- Zhou , L. , Yu , X. , and Zhu , J. ( 2014 ). Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement . Nano Lett. 14 ( 2 ): 1093 – 1098 .
- Xie , C. , Nie , B. , Zeng , L. et al. ( 2014 ). Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors . ACS Nano 8 ( 4 ): 4015 – 4022 .
- Ali , N.M. and Rafat , N.H. ( 2017 ). Modeling and simulation of nanorods photovoltaic solar cells: a review . Renewable Sustainable Energy Rev. 68 : 212 – 220 .
- Shah , V. , Bhaliya , J. , Patel , G.M. , and Joshi , P. ( 2022 ). Room-temperature chemiresistive gas sensing of SnO 2 nanowires: a review . J. Inorg. Organomet. Polym. Mater. 32 ( 3 ): 741 – 772 .
- Otnes , G. and Borgström , M.T. ( 2017 ). Toward high efficiency nanowire solar cells . Nano Today 12 : 31 – 45 .
- Shah , V. , Bhaliya , J. , Patel , G.M. , and Joshi , P. ( 2022 ). Recent advancement in Pd-decorated nanostructures for its catalytic and chemiresistive gas sensing applications: a review . Topics Catal.
- Krogstrup , P. , Jørgensen , H.I. , Heiss , M. et al. ( 2013 ). Single-nanowire solar cells beyond the Shockley–Queisser limit . Nat. Photonics 7 ( 4 ): 306 – 310 .
- Patel , G. , Pillai , V. , and Vora , M. ( 2019 ). Liquid phase exfoliation of two-dimensional materials for sensors and photocatalysis – a review . J. Nanosci. Nanotechnol. 19 ( 8 ): 5054 – 5073 .
- Singh , N. , Sahoo , M.K. , and Kale , P.G. ( 2018 ). Effect of MACE parameters on length of porous silicon nanowires (PSiNWs) . J. Cryst. Growth 496–497 : 10 – 14 .
- Amri , C. , Ouertani , R. , Hamdi , A. , and Ezzaouia , H. ( 2017 ). Effect of silver-assisted chemical vapor etching on morphological properties and silicon solar cell performance . Mater. Sci. Semicond. Process. 63 : 176 – 183 .
- Kurokawa , Y. , Yano , M. , Miyajima , S. , and Yamada , A. ( 2017 ). Bandgap tuning of silicon nanowire arrays for application to all-silicon tandem solar cells . Jpn J. Appl. Phys. 56 ( 4S ): 04CS03 .
- Zhang , X. , Zeng , X. , Zhang , S. , and Liu , F. ( 2016 ). Improving the performance of radial n-i-p junction Si nanowire solar cells by catalyst residue removal . Mater. Sci. Semicond. Process. 41 : 457 – 461 .
- Nafie , N. , Lachiheb , M.A. , and Bouaicha , M. ( 2012 ). Effect of etching time on morphological, optical, and electronic properties of silicon nanowires . Nanoscale Res. Lett. 7 ( 1 ): 393 .
- Al-Taay , H.F. , Mahdi , M.A. , Parlevliet , D. , and Jennings , P. ( 2017 ). Fabrication and characterization of solar cells based on silicon nanowire homojunctions . Silicon 9 ( 1 ): 17 – 23 .
- Vu , X.T. , GhoshMoulick , R. , Eschermann , J.F. et al. ( 2010 ). Fabrication and application of silicon nanowire transistor arrays for biomolecular detection . Sens. Actuators, B 144 ( 2 ): 354 – 360 .
- Zhang , G.-J. and Ning , Y. ( 2012 ). Silicon nanowire biosensor and its applications in disease diagnostics: a review . Anal. Chim. Acta 749 : 1 – 15 .
- Choi , J.-H. , Kim , H. , Kim , H.-S. et al. ( 2013 ). MMP-2 detective silicon nanowire biosensor using enzymatic cleavage reaction . J. Biomed. Nanotechnol. 9 ( 4 ): 732 – 735 .
- Biswas , P. , Karn , A.K. , Balasubramanian , P. , and Kale , P.G. ( 2017 ). Biosensor for detection of dissolved chromium in potable water: A review . Biosens. Bioelectron. 94 : 589 – 604 .
- Gao , A. , Lu , N. , Dai , P. et al. ( 2011 ). Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids . Nano Lett. 11 ( 9 ): 3974 – 3978 .
- Tomioka , K. , Yoshimura , M. , and Fukui , T. ( 2012 ). A III–V nanowire channel on silicon for high-performance vertical transistors . Nature 488 ( 7410 ): 189 – 192 .
-
Patel , G.
,
Pillai , V.
,
Bhatt , P.
, and
Mohammad , S.
(
2020
).
Application of nanosensors in the food industry
. In:
Nanosensors for Smart Cities
,
355
–
368
.
Elsevier
.
10.1016/B978-0-12-819870-4.00020-7 Google Scholar
-
Patel , G.M.
,
Shah , V.R.
,
Bhatt , G.J.
, and
Deota , P.T.
(
2021
).
Humidity nanosensors for smart manufacturing
. In:
Nanosensors for Smart Manufacturing
(ed.
S. Thomas
,
T.A. Nguyen
,
M. Ahmadi
, et al.),
555
–
580
.
Elsevier
.
10.1016/B978-0-12-823358-0.00026-5 Google Scholar
- Ge , M. , Rong , J. , Fang , X. , and Zhou , C. ( 2012 ). Porous doped silicon nanowires for lithium ion battery anode with long cycle life . Nano Lett. 12 ( 5 ): 2318 – 2323 .
- Yang , Y. , Ren , J.-G. , Wang , X. et al. ( 2013 ). Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries . Nanoscale 5 ( 18 ): 8689 .
- McSweeney , W. , Geaney , H. , and O'Dwyer , C. ( 2015 ). Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes . Nano Res. 8 ( 5 ): 1395 – 1442 .
- Baek , S.-H. , Park , J.-S. , Jeong , Y.-M. , and Kim , J.H. ( 2016 ). Facile synthesis of Ag-coated silicon nanowires as anode materials for high-performance rechargeable lithium battery . J. Alloys Compd. 660 : 387 – 391 .
- Yu , H. , Sun , Y. , Singh , N. et al. ( 2012 ). Perspective of flash memory realized on vertical Si nanowires . Microelectron. Reliab. 52 ( 4 ): 651 – 661 .
- Kayes , B.M. , Atwater , H.A. , and Lewis , N.S. ( 2005 ). Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells . J. Appl. Phys. 97 ( 11 ): 114 302 .
- Perraud , S. , Poncet , S. , Noël , S. et al. ( 2009 ). Full process for integrating silicon nanowire arrays into solar cells . Sol. Energy Mater. Sol. Cells 93 ( 9 ): 1568 – 1571 .
- Kale , P.G. , Pratibha , S. , and Solanki , C.S. ( 2012 ). Synthesis and characterization of Si nanoparticles obtained on sonication of porous silicon multilayer films . J. Nano Res. 17 : 13 – 25 .
- Kim , J. , Lim , J. , Kim , M. et al. ( 2014 ). Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells . ACS Appl. Mater. Interfaces 6 ( 21 ): 18788 – 18794 .
- Chehata , N. , Ltaief , A. , Beyou , E. et al. ( 2015 ). Functionalized silicon nanowires/conjugated polymer hybrid solar cells: optical, electrical and morphological characterizations . J. Lumin. 168 : 315 – 324 .
- Fan , Z. , Razavi , H. , Do , J. et al. ( 2009 ). Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates . Nat. Mater. 8 ( 8 ): 648 – 653 .
- Tang , J. , Huo , Z. , Brittman , S. et al. ( 2011 ). Solution-processed core–shell nanowires for efficient photovoltaic cells . Nat. Nanotechnol. 6 ( 9 ): 568 – 572 .
- Aberg , I. , Vescovi , G. , Asoli , D. et al. ( 2016 ). A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun . IEEE J. Photovoltaics 6 ( 1 ): 185 – 190 .
- Mann , S.A. , Oener , S.Z. , Cavalli , A. et al. ( 2016 ). Quantifying losses and thermodynamic limits in nanophotonic solar cells . Nat. Nanotechnol. 11 ( 12 ): 1071 – 1075 .
- Wallentin , J. , Anttu , N. , Asoli , D. et al. ( 2013 ). InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit . Science (1979) 339 ( 6123 ): 1057 – 1060 .
- van Dam , D. , van Hoof , N.J.J. , Cui , Y. et al. ( 2016 ). High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium–tin–oxide Mie scatterers . ACS Nano 10 ( 12 ): 11414 – 11419 .
- Ibáñez-Redín , G. , Joshi , N. , do Nascimento , G.F. et al. ( 2020 ). Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe 2 O 4 nanoparticles . Microchim. Acta 187 ( 11 ): 619 .
- Wu , Y. , Joshi , N. , Zhao , S. et al. ( 2020 ). NO 2 gas sensors based on CVD tungsten diselenide monolayer . Appl. Surf. Sci. 529 ( 147 ): 110 .
-
Joshi , N.
,
Braunger , M.L.
,
Shimizu , F.M.
et al. (
2020
).
Two-dimensional transition metal dichalcogenides for gas sensing applications
. In:
Nanosensors for Environmental Applications. Environmental Chemistry for a Sustainable World
, vol.
43
(ed.
S. Kumar Tuteja
,
D. Arora
,
N. Dilbaghi
and
E. Lichtfouse
),
131
–
155
.
Cham
.
https://doi.org/10.1007/978-3-030-38101-1_4
:
Springer
.
10.1007/978-3-030-38101-1_4 Google Scholar
- Wu , Y. , Huang , Q. , Nie , J. et al. ( 2019 ). All-carbon based flexible humidity sensor . J. Nanosci. Nanotechnol. 19 ( 8 ): 5310 – 5316 .
-
Liu , H.
,
Chu , Y.
,
Liu , Y.
et al. (
2019
).
Label-free AC sensing by a graphene transistor for 100-ppb formaldehyde in air
. In:
2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS)
,
488
–
491
.
10.1109/MEMSYS.2019.8870717 Google Scholar
- Subramani , I.G. , Perumal , V. , Gopinath , S.C.B. et al. ( 2020 ). 3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination . J. Taiwan Inst. Chem. Eng. 116 : 26 – 35 .
-
Kumar , A.
and
Joshi , N.
(
2021
).
Self-powered environmental monitoring gas sensors: piezoelectric and triboelectric approaches
. In:
Nanobatteries and Nanogenerators
(ed.
H. Song
,
R. Venkatachalam
,
T.A. Nguyen
, et al.),
463
–
489
.
Elsevier
.
10.1016/B978-0-12-821548-7.00018-X Google Scholar
- Vasudevan , M. , Tai , M.J.Y. , Perumal , V. et al. ( 2021 ). Cellulose acetate-MoS 2 nanopetal hybrid: a highly sensitive and selective electrochemical aptasensor of Troponin I for the early diagnosis of Acute Myocardial Infarction . J. Taiwan Inst. Chem. Eng. 118 : 245 – 253 .
-
Materon , E.M.
,
Joshi , N.
,
Shimizu , F.M.
et al. (
2021
).
Electrochemical sensors based on metal oxide-boron nitride nanocomposites in the detection of biomolecules and toxic chemicals
. In:
Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals
(ed.
A. Pandikumar
and
P. Rameshkumar
),
293
–
311
.
Elsevier
.
10.1016/B978-0-12-820727-7.00004-5 Google Scholar
- Materon , E.M. , Wong , A. , Gomes , L.M. et al. ( 2021 ). Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes . J. Mater. Chem. C 9 ( 17 ): 5633 – 5642 .
-
Miyazaki , C.M.
,
Joshi , N.
,
Oliveira , O.N.
, and
Shimizu , F.M.
(
2021
).
Metal oxides and sulfide-based biosensors for monitoring and health control
. In:
Metal, Metal-Oxides and Metal Sulfides for Batteries, Fuel Cells, Solar Cells, Photocatalysis and Health Sensors. Environmental Chemistry for a Sustainable World
, vol.
62
(ed.
S. Rajendran
,
H. Karimi-Maleh
,
J. Qin
and
E. Lichtfouse
),
169
–
208
.
Cham
.
https://doi.org/10.1007/978-3-030-63791-0_6
:
Springer
.
10.1007/978-3-030-63791-0_6 Google Scholar
-
Materon , E.M.
,
Gómez , F.R.
,
Joshi , N.
et al. (
2021
).
Smart materials for electrochemical flexible nanosensors: advances and applications
. In:
Nanosensors for Smart Manufacturing
(ed.
S. Thomas
,
T.A. Nguyen
,
M. Ahmadi
, et al.),
347
–
371
.
Elsevier
.
10.1016/B978-0-12-823358-0.00018-6 Google Scholar
-
Joshi , N.
,
Braunger , M.L.
,
Shimizu , F.M.
et al. (
2021
).
Insights into nano-heterostructured materials for gas sensing: a review
.
Multifunct. Mater.
4
(
3
):
032002
.
10.1088/2399-7532/ac1732 Google Scholar
- Vasudevan , M. , Tai , M.J.Y. , Perumal , V. et al. ( 2020 ). Highly sensitive and selective acute myocardial infarction detection using aptamer-tethered MoS 2 nanoflower and screen-printed electrodes . Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2060 .
- Materón , E.M. , Miyazaki , C.M. , Carr , O. et al. ( 2021 ). Magnetic nanoparticles in biomedical applications: a review . Appl. Surf. Sci. Adv. 6 ( 100 ): 163 .
-
Lu , Y.-W.
,
Wang , C.
,
Joshi , N.
, and
Liu , H.
(
2022
).
MoS
2
nanoflowers-activated peroxydisulfate oxidation for rapid and efficient water disinfection
.
Water Cycle
3
:
44
–
49
.
10.1016/j.watcyc.2022.04.001 Google Scholar
- Atikur Rahman , M. ( 2014 ). A review on semiconductors including applications and temperature effects in semiconductors . Am. Sci. Res. J. Eng. Technol. Sci.ences 7 ( 1 ): 50 – 70 .
-
Simya , O.K.
,
Radhakrishnan , P.
,
Ashok , A.
et al. (
2018
).
Engineered nanomaterials for energy applications
. In:
Handbook of Nanomaterials for Industrial Applications
(ed.
C.M. Hussain
),
751
–
767
.
Elsevier
.
10.1016/B978-0-12-813351-4.00030-4 Google Scholar
- Ong , P.-L. and Levitsky , I. ( 2010 ). Organic/IV, III-V semiconductor hybrid solar cells . Energies (Basel) 3 ( 3 ): 313 – 334 .
- Sengupta , D. , Das , P. , Mondal , B. , and Mukherjee , K. ( 2016 ). Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application – a review . Renewable Sustainable Energy Rev. 60 : 356 – 376 .
- Kupec , J. , Witzigmann , B. , Choi , S. et al. ( 2009 ). Dispersion, wave propagation and efficiency analysis of nanowire solar cells . Opt. Express 17 ( 12 ): 10399 – 10410 .
- Kalowekamo , J. and Baker , E. ( 2009 ). Estimating the manufacturing cost of purely organic solar cells . Sol. Energy 83 ( 8 ): 1224 – 1231 .
- Li , G. , Zhu , R. , and Yang , Y. ( 2012 ). Polymer solar cells . Nat. Photonics 6 ( 3 ): 153 – 161 .
- Kaltenbrunner , M. , White , M.S. , Głowacki , E.D. et al. ( 2012, 2012 ). Ultrathin and lightweight organic solar cells with high flexibility . Nat. Commun. 3 ( 1 ): 1 – 7 .
- Huynh , W.U. , Dittmer , J.J. , and Alivisatos , A.P. ( 2002 ). Hybrid nanorod-polymer solar cells . Science (1979) 295 ( 5564 ): 2425 – 2427 .
- Chao , J.J. , Shiu , S.C. , and Lin , C.F. ( 2012 ). GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer . Sol. Energy Mater. Sol. Cells 105 : 40 – 45 .
- Diener , M.D. and Alford , J.M. ( 1998 ). Isolation and properties of small-bandgap fullerenes . Nature 393 ( 6686 ): 668 – 671 .
- Wright , M. and Uddin , A. ( 2012 ). Organic – inorganic hybrid solar cells: a comparative review . Sol. Energy Mater. Sol. Cells 107 : 87 – 111 .
- Wu , D. ( 2017 ) Compound semiconductor nanowires based organic-inorganic hybrid solar cell . PhD Thesis. Nanyang Technological University, Singapore.
- Heeger , A.J. ( 2014 ). 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation . Adv. Mater. 26 ( 1 ): 10 – 28 .
- Bouclé , J. , Chyla , S. , Shaffer , M.S.P. et al. ( 2008 ). Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO 2 nanorods . Adv. Funct. Mater. 18 ( 4 ): 622 – 633 .
- Xu , T. and Qiao , Q. ( 2011 ). Conjugated polymer–inorganic semiconductor hybrid solar cells . Energy Environ. Sci. 4 ( 8 ): 2700 – 2720 .
- Wu , W.-Q. , Lei , B.-X. , Rao , H.-S. et al. ( 2013 ). Hydrothermal fabrication of hierarchically anatase TiO 2 nanowire arrays on FTO glass for dye-sensitized solar cells . Sci. Rep. 3 ( 1 ): 1352 .
- Fan , J. , Fàbrega , C. , Zamani , R.R. et al. ( 2013 ). Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO 2 @TiO Heterostructures with a cobalt(II/III) redox electrolyte . ACS Appl. Mater. Interfaces 5 ( 20 ): 9872 – 9877 .
- Lee , D. , Rho , Y. , Allen , F.I. et al. ( 2013 ). Synthesis of hierarchical TiO 2 nanowires with densely-packed and omnidirectional branches . Nanoscale 5 ( 22 ): 11 147 .
- Sun , P. , Zhang , X. , Wang , L. et al. ( 2015 ). Bilayer TiO 2 photoanode consisting of a nanowire–nanoparticle bottom layer and a spherical voids scattering layer for dye-sensitized solar cells . New J. Chem. 39 ( 6 ): 4845 – 4851 .
- Ko , S.H. , Lee , D. , Kang , H.W. et al. ( 2011 ). Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell . Nano Lett. 11 ( 2 ): 666 – 671 .
- Barpuzary , D. and Qureshi , M. ( 2013 ). Enhanced photovoltaic performance of semiconductor-sensitized ZnO-CdS coupled with graphene oxide as a novel photoactive material . ACS Appl. Mater. Interfaces 5 ( 22 ): 11673 – 11682 .
- Fan , J. , Hao , Y. , Munuera , C. et al. ( 2013 ). Influence of the annealing atmosphere on the performance of ZnO nanowire dye-sensitized solar cells . J. Phys. Chem. C 117 ( 32 ): 16349 – 16356 .
- Garnett , E.C. , Brongersma , M.L. , Cui , Y. , and McGehee , M.D. ( 2011 ). Nanowire solar cells . Ann. Rev. Mater. Res. 41 : 269 – 295 .
- Hochbaum , A.I. and Yang , P. ( 2010 ). Semiconductor nanowires for energy conversion . Chem. Rev. 110 ( 1 ): 527 – 546 .
- Law , M. , Goldberger , J. , and Yang , P. ( 2004 ). Semiconductor nanowires and nanotubes . Annu. Rev. Mater. Res 34 : 83 – 122 .
- Schmidt , V. and W.J.G.U. ( 2010 ). Growth, thermodynamics, and electrical properties of silicon nanowires . Chem. Rev. 110 ( 1 ): 361 – 388 .
- Fan , H.J. , Werner , P. , and Zacharias , M. ( 2006 ). Semiconductor nanowires: from self-organization to patterned growth . Small 2 ( 6 ): 700 – 717 .
- Wacaser , B.A. , Dick , K.A. , Johansson , J. et al. ( 2009 ). Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires . Adv. Mater. 21 ( 2 ): 153 – 165 .
- Hochbaum , A.I. , Fan , R. , He , R. , and Yang , P. ( 2005 ). Controlled growth of Si nanowire arrays for device integration . Nano Lett. 5 ( 3 ): 457 – 460 .
- Perea , D.E. , Hemesath , E.R. , Schwalbach , E.J. , and Lensch-Falk , J.L. ( 2009 ). Direct measurement of dopant distribution in an individual vapor-liquid-solid nanowire . Nat. Nanotechnol. 4 ( 5 ): 315 – 319 .
- Garnett , E.C. , Tseng , Y.-C. , Khanal , D.R. et al. ( 2009 ). Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements . Nat. Nanotechnol. 4 ( 5 ): 311 – 314 .
- Whang , S.J. , Lee , S. , Chi , D.Z. et al. ( 2007 ). B-doping of vapor–liquid–solid grown Au-catalyzed and Al-catalyzed Si nanowires: effects of B 2 H 6 gas during Si nanowire growth and B-doping by a post-synthesis in situ plasma process . Nanotechnology 18 ( 27 ): 275302 .
- Pan , L. , Lew , K.K. , Redwing , J.M. , and Dickey , E.C. ( 2005 ). Effect of diborane on the microstructure of boron-doped silicon nanowires . J. Cryst. Growth 277 ( 1–4 ): 428 – 436 .
- Dick , K.A. , Deppert , K. , Karlsson , L.S. et al. ( 2005 ). A new understanding of Au-assisted growth of III–V semiconductor nanowires . Adv. Funct. Mater. 15 ( 10 ): 1603 – 1610 .
- Persson , A.I. , Larsson , M.W. , Stenström , S. et al. ( 2004 ). Solid-phase diffusion mechanism for GaAs nanowire growth . Nat. Mater. 3 ( 10 ): 677 – 681 .
- Bierman , M.J. , Lau , Y.K.A. , Kvit , A.V. et al. ( 2008 ). Dislocation-driven nanowire growth and Eshelby twist . Science (1979) 320 ( 5879 ): 1060 – 1063 .
- Zhu , J. , Peng , H. , Marshall , A.F. et al. ( 2008 ). Formation of chiral branched nanowires by the Eshelby Twist . Nat. Nanotechnol. 3 ( 8 ): 477 – 481 .
- Schmid , H. , Björk , M.T. , Knoch , J. et al. ( 2008 ). Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane . J. Appl. Phys. 103 ( 2 ): 024304 .
- Mårtensson , T. , Carlberg , P. , Borgstrom , M. et al. ( 2004 ). Nanowire arrays defined by nanoimprint lithography . Nano Lett. 4 ( 4 ): 699 – 702 .
- Zschech , D. , Kim , D.H. , Milenin , A.P. et al. ( 2007 ). Ordered arrays of <100> − oriented silicon nanorods by CMOS-compatible block copolymer lithography . Nano Lett. 7 ( 6 ): 1516 – 1520 .
- Huang , Z. , Fang , H. , and Zhu , J. ( 2007 ). Fabrication of silicon nanowire arrays with controlled diameter, length, and density . Adv. Mater. 19 ( 5 ): 744 – 748 .
- Garnett , E.C. and Yang , P. ( 2008 ). Silicon nanowire radial p-n junction solar cells . J. Am. Chem. Soc. 130 ( 29 ): 9224 – 9225 .
- Hsu , C.-M. , Connor , S.T. , Tang , M.X. , and Cui , Y. ( 2008 ). Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching . Appl. Phys. Lett. 93 ( 13 ): 133109 .
- Huang , Z. , Zhang , X. , Reiche , M. et al. ( 2008 ). Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching . Nano Lett. 8 ( 9 ): 3046 – 3051 .
- Garnett , E. and Yang , P. ( 2010 ). Light trapping in silicon nanowire solar cells . Nano Lett. 10 ( 3 ): 1082 – 1087 .
- Bogush , G.H. , Tracy , M.A. , and Zukoski , C.F. IV ( 1988 ). Preparation of monodisperse silica particles: control of size and mass fraction . J. Non-Cryst. Solids 104 ( 1 ): 95 – 106 .
- Jeong , S. , Hu , L. , Lee , H.R. et al. ( 2010 ). Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications . Nano Lett. 10 ( 8 ): 2989 – 2994 .
- Wang , K. , Chen , J. , Zhou , W. et al. ( 2008 ). Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications . Adv. Mater. 20 ( 17 ): 3248 – 3253 .
- Peng , K. , Xu , Y. , Wu , Y. et al. ( 2005 ). Aligned single-crystalline Si nanowire arrays for photovoltaic applications . Small 1 ( 11 ): 1062 – 1067 .
- Shen , X. , Sun , B. , Liu , D. , and Lee , S.-T. ( 2011 ). Hybrid heterojunction solar cell based on organic–inorganic silicon nanowire array architecture . J. Am. Chem. Soc. 133 ( 48 ): 19408 – 19415 .
-
Patel , G.M.
,
Bhatt , G.J.
, and
Deota , P.T.
(
2022
).
Synthesis and characterization of silicon-based hybrid nanoparticles
. In:
Silicon-Based Hybrid Nanoparticles
(ed.
S. Thomas
,
T.A. Nguyen
,
M. Ahmadi
, et al.),
11
–
43
.
Elsevier
.
10.1016/B978-0-12-824007-6.00006-X Google Scholar
- Liu , Q. , Chai , Y. , Zhang , L. et al. ( 2017 ). Highly efficient Pt/NaNbO 3 nanowire photocatalyst: its morphology effect and application in water purification and H 2 production . Appl. Catal., B 205 : 505 – 513 .
-
Kasuga , T.
,
Hiramatsu , M.
,
Hoson , A.
et al. (
1999
).
Titania nanotubes prepared by chemical processing
.
Adv. Mater.
11
(
15
):
1307
–
1311
.
10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H CAS Web of Science® Google Scholar
- Bakhshayesh , A.M. , Mohammadi , M.R. , Dadar , H. , and Fray , D.J. ( 2013 ). Improved efficiency of dye-sensitized solar cells aided by corn-like TiO 2 nanowires as the light scattering layer . Electrochim. Acta 90 : 302 – 308 .
- Majumder , S. , Baviskar , P.K. , and Sankapal , B.R. ( 2016 ). Straightening of chemically deposited CdS nanowires through annealing toward improved PV device performance . Ceram. Int. 42 ( 6 ): 6682 – 6691 .
-
Bouroushian , M.
(
2010
).
Chalcogens and metal chalcogenides
. In:
Electrochemistry of Metal Chalcogenides. Monographs in Electrochemistry
.
Berlin, Heidelberg
:
Springer
https://doi.org/10.1007/978-3-642-03967-6_1
.
10.1007/978-3-642-03967-6_1 Google Scholar
-
Hodes , G.
(
2002
).
Chemical Solution Deposition Of Semiconductor Films
.
CRC Press
.
10.1201/9780203909096 Google Scholar
- Nair , N. and Sankapal , B.R. ( 2016 ). Cationic-exchange approach for conversion of two dimensional CdS to two dimensional Ag 2 S nanowires with an intermediate core–shell nanostructure toward supercapacitor application . New J. Chem. 40 ( 12 ): 10144 – 10152 .
- Matras-Postołek , K. , Żaba , A. , Nowak , E.M. et al. ( 2018 ). Formation and characterization of one-dimensional ZnS nanowires for ZnS/P 3 HT hybrid polymer solar cells with improved efficiency . Appl. Surf. Sci. 451 : 180 – 190 .
- Majumder , S. , Mendhe , A.C. , and Sankapal , B.R. ( 2019 ). Nanoheterojunction through PbS nanoparticles anchored CdS nanowires toward solar cell application . Int. J. Hydrogen Energy 44 ( 14 ): 7095 – 7107 .
-
Cagnani , G.R.
,
Joshi , N.
, and
Shimizu , F.M.
(
2019
).
Carbon nanotubes-based nanocomposite as photoanode
. In:
Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells
(ed.
A. Pandikumar
,
K. Jothivenkatachalam
and
K. Bhojanaa
),
213
–
229
.
Wiley
.
10.1002/9781119557401.ch10 Google Scholar
- Joshi , N. , Shimizu , F.M. , Awan , I.T. et al. ( 2016 ). Ozone sensing properties of nickel phthalocyanine:ZnO nanorod heterostructures . IEEE Sens. 2016 : 1 – 3 .
- Gonçalves , R.A. , Toledo , R.P. , Joshi , N. , and Berengue , O.M. ( 2021 ). Green synthesis and applications of ZnO and TiO 2 nanostructures . Molecules 26 ( 8 ): 2236 .
- Joshi , N. , da Silva , L.F. , Shimizu , F.M. et al. ( 2019 ). UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature . Microchim. Acta 186 ( 7 ): 418 .
-
Peng , Q.
and
Qi , Y.
(
2011
).
ZnO nanowires and their application for solar cells
. In:
Nanowires - Implementations and Applications
(ed.
A.A. Hashim
),
157
–
178
.
InTech
.
10.5772/17923 Google Scholar
- Luo , L. , Lv , G. , Li , B. et al. ( 2010 ). Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application . Thin Solid Films 518 ( 18 ): 5146 – 5152 .
- Baxter , J.B. , Walker , A.M. , van Ommering , K. , and Aydil , E.S. ( 2006 ). Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells . Nanotechnology 17 ( 11 ): S304 – S312 .
- Bundgaard , E. and Krebs , F. ( 2007 ). Low band gap polymers for organic photovoltaics . Sol. Energy Mater. Sol. Cells 91 ( 11 ): 954 – 985 .
- Krebs , F.C. ( 2009 ). Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing . Sol. Energy Mater. Sol. Cells 93 ( 4 ): 465 – 475 .
- Nadarajah , A. , Word , R.C. , VanSant , K. , and Könenkamp , R. ( 2008 ). Nanowire–quantum-dot–polymer solar cell . Phys. Status Solidi (b) 245 ( 9 ): 1834 – 1837 .
- Tokuno , T. , Nogi , M. , Karakawa , M. et al. ( 2011 ). Fabrication of silver nanowire transparent electrodes at room temperature . Nano Res. 4 ( 12 ): 1215 – 1222 .
- Gaynor , W. , Lee , J.Y. , and Peumans , P. ( 2010 ). Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes . ACS Nano 23 ( 26 ): 30 – 34 .
- Morgenstern , F.S.F. , Kabra , D. , Massip , S. et al. ( 2011 ). Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells . Appl. Phys. Lett. 99 ( 18 ): 183307 .
- Lim , J.-W. , Cho , D.Y. , Eun , K. et al. ( 2012 ). Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells . Sol. Energy Mater. Sol. Cells 105 : 69 – 76 .
- Yang , L. , Zhang , T. , Zhou , H. et al. ( 2011 ). Solution-processed flexible polymer solar cells with silver nanowire electrodes . ACS Appl. Mater. Interfaces 3 ( 10 ): 4075 – 4084 .
- Chen , C.C. , Dou , L. , Zhu , R. et al. ( 2012 ). Visibly transparent polymer solar cells produced by solution processing . ACS Nano 6 ( 8 ): 7185 – 7190 .
- Ajuria , J. , Ugarte , I. , Cambarau , W. et al. ( 2012 ). Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes . Sol. Energy Mater. Sol. Cells 102 : 148 – 152 .
- Stubhan , T. , Krantz , J. , Li , N. et al. ( 2012 ). High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode . Sol. Energy Mater. Sol. Cells 107 : 248 – 251 .
- Singh , M. , Jiu , J. , Sugahara , T. , and Suganuma , K. ( 2014 ). Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process . ACS Appl. Mater. Interfaces 6 ( 18 ): 16297 – 16303 .
- Margulis , G.Y. , Greyson Christoforo , M. , Lam , D. et al. ( 2013 ). Spray deposition of silver nanowire electrodes for semitransparent solid-state dye-sensitized solar cells . Adv. Energy Mat. 3 ( 12 ): 1657 – 1663 .
- Brabec , C.J. and Durrant , J.R. ( 2008 ). Solution-processed organic solar cell . MRS Bull. 33 ( 7 ): 670 – 675 .
- Lee , J.-Y. , Connor , S.T. , Cui , Y. , and Peumans , P. ( 2008 ). Solution-processed metal nanowire mesh transparent electrodes . Nano Lett. 8 ( 2 ): 689 – 692 .
- Choi , K.-H. , Kim , J. , Noh , Y.-J. et al. ( 2013 ). Ag nanowire-embedded ITO films as a near-infrared transparent and flexible anode for flexible organic solar cells . Sol. Energy Mater. Sol. Cells 110 : 147 – 153 .
- Noh , Y.-J. , Kim , S.-S. , Kim , T.-W. , and Na , S.-I. ( 2014 ). Cost-effective ITO-free organic solar cells with silver nanowire–PEDOT:PSS composite electrodes via a one-step spray deposition method . Sol. Energy Mater. Sol. Cells 120 : 226 – 230 .
- Chen , J. , Zhou , W. , Chen , J. et al. ( 2015 ). Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells . Nano Res. 8 ( 3 ): 1017 – 1025 .
- Borgstrom , M.T. , Zwiller , V. , Muller , E. , and Imamoglu , A. ( 2005 ). Optically bright quantum dots in single nanowire . Nano Lett. 5 : 1439 .
- Dorenbos , S.N. , Sasakura , H. , van Kouwen , M.P. et al. ( 2010 ). Position controlled nanowires for infrared single photon emission . Appl. Phys. Lett. 97 ( 171 ): 106 .
- Han , S. , Hong , S. , Ham , J. et al. ( 2014 ). Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics . Adv. Mater. 26 ( 33 ): 5808 – 5814 .
- Bao , C. , Yang , J. , Gao , H. et al. ( 2015 ). In situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared . ACS Nano 9 ( 3 ): 2502 – 2509 .
- Stewart , I.E. , Rathmell , A.R. , Yan , L. et al. ( 2014 ). Solution-processed copper-nickel nanowire anodes for organic solar cells . Nanoscale 6 ( 11 ): 5980 – 5988 .
- Ahn , Y. , Jeong , Y. , Lee , D. , and Lee , Y. ( 2015 ). Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes . ACS Nano 9 ( 3 ): 3125 – 3133 .
- Won , Y. , Kim , A. , Lee , D. et al. ( 2014 ). Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics . NPG Asia Mater. 6 ( 6 ): e105 – e105 .
-
Ko , S.H.
(
2014
).
Review of the multi-scale nano-structure approach to the development of high efficiency solar cells
.
Smart Sci.
2
(
2
):
54
–
62
.
10.1080/23080477.2014.11665604 Google Scholar
- Song , J. , Li , J. , Xu , J. , and Zeng , H. ( 2014 ). Superstable transparent conductive Cu@Cu 4 Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics . Nano Lett. 14 ( 11 ): 6298 – 6305 .
- Won , Y. , Kim , A. , Yang , W. et al. ( 2014 ). A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700% . NPG Asia Mater. 6 ( 9 ): e132 – e132 .
- Im , H.G. , Jung , S.H. , Jin , J. et al. ( 2014 ). Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics . ACS Nano 8 ( 10 ): 10973 – 10979 .
- Stortini , A.M. , Moretto , L.M. , Mardegan , A. et al. ( 2015 ). Arrays of copper nanowire electrodes: preparation, characterization and application as nitrate sensor . Sens. Actuators, B 207 ( Part A ): 186 – 192 .
- Zhao , Y. , Fan , L. , Zhang , Y. et al. ( 2015 ). Hyper-branched Cu@Cu 2 O coaxial nanowires mesh electrode for ultra-sensitive glucose detection . ACS Appl. Mater. Interfaces 7 ( 30 ): 16802 – 16812 .