Highly Sensitive Room-Temperature Gas Sensors Based on Organic–Inorganic Nanofibers
Bhagyashri Bhangare
1 Bhabha Atomic Research Centre, Technical Physics Division, Anushaktinagar, Mumbai, 400085 India
Search for more papers by this authorSinjumol K. Rajan
1 Bhabha Atomic Research Centre, Technical Physics Division, Anushaktinagar, Mumbai, 400085 India
2 Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
Search for more papers by this authorNiranjan S. Ramgir
1 Bhabha Atomic Research Centre, Technical Physics Division, Anushaktinagar, Mumbai, 400085 India
2 Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
Search for more papers by this authorDinesh Kumar Aswal
2 Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
3 Bhabha Atomic Research Centre, Health Safety and Environment Group, Mumbai, 400085 India
Search for more papers by this authorAnil Krishna Debnath
1 Bhabha Atomic Research Centre, Technical Physics Division, Anushaktinagar, Mumbai, 400085 India
2 Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
Search for more papers by this authorBhagyashri Bhangare
1 Bhabha Atomic Research Centre, Technical Physics Division, Anushaktinagar, Mumbai, 400085 India
Search for more papers by this authorSinjumol K. Rajan
1 Bhabha Atomic Research Centre, Technical Physics Division, Anushaktinagar, Mumbai, 400085 India
2 Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
Search for more papers by this authorNiranjan S. Ramgir
1 Bhabha Atomic Research Centre, Technical Physics Division, Anushaktinagar, Mumbai, 400085 India
2 Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
Search for more papers by this authorDinesh Kumar Aswal
2 Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
3 Bhabha Atomic Research Centre, Health Safety and Environment Group, Mumbai, 400085 India
Search for more papers by this authorAnil Krishna Debnath
1 Bhabha Atomic Research Centre, Technical Physics Division, Anushaktinagar, Mumbai, 400085 India
2 Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
The bionic science and robotic science have obtained the artificial electronics human sensory organs such as electronic skins (E-skins), electronic nose (E-nose), and electronic tongue (E-tongue) to sense the physical and chemical environment. Being one of the building blocks, gas sensors have crucial importance in the field of environmental monitoring, health safety, agriculture, military applications, food chains, and process industries. To implement the laboratory grade sensors with internet of things (IoT) technology, wearable devices (flexible and miniaturized) are studied innovatively and extensively. In view of this the gas sensors based on 1D nanostructures, such as nanowires (NWs), nanotubes (NTs), nanorods (NRs), and nanofibers (NFs) have drawn significant attention. Among these, NFs have large specific surface area as well as high porosity to accelerate the gas diffusion. It further enhances the electric charge transport due to the fibrous reticular structure by providing the chemically reactive sites on the adsorption area. Although conventional inorganic nanomaterials are being highly sensitive, they are not flexible in order to tune the sensor characteristics in pristine forms. To overcome this, attention is being provided to new class of nanomaterials, i.e. organic–inorganic nanohybrids wherein organic or soft nanomaterials are employed as a matrix or in hybrid forms. These materials are becoming promising candidates to achieve the lower or near room-temperature operations of gas sensors. Besides, NFs have potential to overcome several challenges such as portability, durability, and flexible electronics.
Recently, the single-NF-based sensors demonstrated its ability to rapid capture, diffuse, and release of gas molecules and have been looked upon to realize ultrasensitive room-temperature gas sensors. To achieve the commercially deployable sensor fulfilling the 4-S sensor selection criteria, understanding of the interfacial properties in nanohybrids and the governing sensing mechanism are a must. The present chapter provides a brief overview of organic–inorganic NFs-based sensors for near or room-temperature-sensing application. The chapter aims to provide elaborate survey of the nanomaterials that fulfills the need of ultrasensitive and ultra-power saving gas sensor devices, which is useful to academics, R&D, and scientific communities. Additionally, the classification and working principles of the heterostructures of NFs are described and discussed elaborately. Different approaches to engineer the surface as well as interface of nanohybrids such as p–n or Schottky heterojunctions and their role in improving the sensor performance are extensively discussed taking help from the literature and some of our recent findings. Finally, some of the daunting challenges that need to be addressed to achieve a completely commercially viable product are discussed along with the possible solutions.
References
- Park , T. , Kim , N. , Kim , D. et al. ( 2019 ). An organic/inorganic nanocomposite of cellulose nanofibers and ZnO nanorods for highly sensitive, reliable, wireless, and wearable multifunctional sensor applications . ACS Appl. Mater. Interfaces 11 : 48239 – 48248 .
- Wang , F. , Wu , Y. , Huang , Y. , and Liu , L. ( 2018 ). Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes . Compos. Sci. Technol. 156 : 269 – 275 .
- Hittini , W. , Greish , Y.E. , Qamhieh , N.N. et al. ( 2020 ). Ultrasensitive and low temperature gas sensor based on electrospun organic-inorganic nanofibers . Org. Electron. 81 : 105659 .
- Lahlou , H. , Claramunt , S. , Monereo , O. et al. ( 2021 ). Preparation of palladium oxide nanoparticles supported on tin oxide nanofibers via modified electrospinning for ultra-low ppb NO 2 detection . Mater. Today Proc. 36 : 1 – 9 .
- D'Arienzo , M. , Armelao , L. , Cacciamani , A. et al. ( 2010 ). One-step preparation of SnO 2 and Pt-doped SnO 2 As inverse opal thin films for gas sensing . Chem. Mater. 22 ( 13 ): 4083 – 4089 .
- Bhangare , B. , Ramgir , N.S. , Sinju , K.R. et al. ( 2020 ). Reduced Graphene Oxide (rGO)-Based Nanohybrids as Gas Sensors: State of the Art, Functional Nanomaterials , 189 – 217 . Springer .
- Ansari , N. , Lone , M.Y. , Shumaila , J. et al. ( 2020 ). Trace level toxic ammonia gas sensing of single-walled carbon nanotubes wrapped polyaniline nanofibers . J. Appl. Phys. 127 : 044902 .
- Zhu , J. , Cho , M. , Li , Y. et al. ( 2021 ). Machine learning-enabled textile-based graphene gas sensing with energy harvesting-assisted IoT application . Nano Energy 86 : 106035 .
- Burman , D. , Raha , H. , Manna , B. et al. ( 2021 ). Substitutional doping of MoS 2 for superior gas-sensing applications: a proof of concept . ACS Sens. 6 ( 9 ): 3398 – 3408 .
- Chen , W.Y. , Jiang , X. , Lai , S.-N. et al. ( 2020 ). Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds . Nat. Comm. 11 : 1302 .
- Pang , Z. , Nie , Q. , Lv , P. et al. ( 2017 ). Design of flexible PANI-coated CuO-TiO 2 -SiO 2 heterostructure nanofibers with high ammonia sensing response values . Nanotechnology 28 : 225501 (10pp).
- Nie , Q. , Pang , Z. , Li , D. et al. ( 2018 ). Facile fabrication of flexible SiO 2 /PANI nanofibers for ammonia gas sensing at room temperature . Colloids Surf. A 537 : 532 – 539 .
- Hoang , N.V. , Hung , C.M. , Hoa , N.D. et al. ( 2019 ). Excellent detection of H 2 S gas at ppb concentrations using ZnFe 2 O 4 nanofibers loaded with reduced graphene oxide . Sens. Actuators, B 282 : 876 – 884 .
- Dang , T.K. , Son , N.T. , Lanh , N.T. et al. ( 2021 ). Extraordinary H 2 S gas sensing performance of ZnO/rGO external and internal heterojunctions . Alloys Comp. 879 : 160457 .
- Nami-Ana , S.F. , Nasresfahani , S. , Tashkhourian , J. et al. ( 2021 ). Nanofibers of polyaniline and Cu(II)–l-aspartic acid for a room-temperature carbon monoxide gas sensor . ACS Appl. Mater. Interfaces 13 ( 33 ): 39791 – 39805 .
- Abdel Rahman , N.S. , Greish , Y.E. , Mahmoud , S.T. et al. ( 2021 ). Fabrication and characterization of cellulose acetate-based nanofibers and nanofilms for H 2 S gas sensing application . Carbohydr. Polym. 258 : 117643 .
- Feng , Q. , Zeng , Y. , Xu , P. et al. ( 2019 ). Tuning the electrical conductivity of amorphous carbon/reduced graphene oxide wrapped-Co 3 O 4 ternary nanofibers for highly sensitive chemical sensors . J. Mater. Chem. A 7 : 27522 – 27534 .
- Jiang , W. , Wang , T. , Chen , X. et al. ( 2020 ). Enhancing room-temperature NO 2 detection of cobalt phthalocyanine based gas sensor at an ultralow laser exposure . Phys. Chem. Chem. Phys. 22 : 18499 – 18506 .
- Pang , Z. , Yildirim , E. , Pasquinelli , M.A. , and Wei , Q. ( 2021 ). Ammonia sensing performance of polyaniline-coated polyamide 6 nanofibers . ACS Omega 6 : 8950 – 8957 .
- Abdali , H. , Heli , B. , and Ajji , A. ( 2019 ). Stable and sensitive amino-functionalized graphene/polyaniline nanofiber composites for room-temperature carbon dioxide sensing . RSC Adv. 9 : 41240 .
- Bhadra , J. , Popelka , A. , Abdulkareem , A. et al. ( 2019 ). Fabrication of polyaniline–graphene/polystyrene nanocomposites for flexible gas sensors . RSC Adv. 9 : 12496 .
- Park , H.J. , Kim , W.-J. , Lee , H.-K. et al. ( 2018 ). Highly flexible, mechanically stable, and sensitive NO 2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics . Sens. Actuators, B 257 : 846 – 852 .
- Zhang , J. , Lu , H. , Liu , C. et al. ( 2017 ). Porous NiO–WO 3 heterojunction nanofibers fabricated by electrospinning with enhanced gas sensing properties . RSC Adv. 7 : 40499 .
- Kou , X. , Meng , F. , Chen , K. et al. ( 2020 ). High-performance acetone gas sensor based on Ru-doped SnO 2 nanofibers . Sens. Actuators, B 320 : 128292 .
- Liu , Y. , Wang , R. , Zhang , T. et al. ( 2019 ). Zeolitic imidazolate framework-8 (ZIF-8)-coated In 2 O 3 nanofibers as an efficient sensing material for ppb-level NO 2 detection . J. Colloids Interface Sci. 541 : 249 – 257 .
- Guo , J. , Li , W. , Zhao , X. et al. ( 2021 ). Highly sensitive, selective, flexible and scalable room-temperature NO 2 gas sensor based on hollow SnO 2 /ZnO nanofibers . Molecules 26 : 6475 .
- Zhou , J. , Ikram , M. , Rehman , A.U. et al. ( 2018 ). Highly selective detection of NH 3 and H 2 S using the pristine CuO and mesoporous In 2 O 3 @CuO multijunctions nanofibers at room temperature . Sens. Actuators, B 255 : 1819 – 1830 .
- Seif , A.M. , Nikfarjam , A. , and Hajghassem , H. ( 2019 ). UV enhanced ammonia gas sensing properties of PANI/TiO 2 core-shell nanofibers . Sens. Actuators B298 : 126906 .
- Xiong , Y. , Li , H. , Li , X. et al. ( 2019 ). Layer-by-layer self-assembly of polyaniline nanofibers/TiO 2 nanotubes heterojunction thin film for ammonia detection at room temperature . Nanotechnology 30 : 135501 .
- Han , H. , Baik , S. , Xu , B. et al. ( 2017 ). Bioinspired geometry-switchable Janus nanofibers for eye-readable H 2 sensors . Adv. Funct. Mater. 27 : 1701618 .
- Pang , Z. , Yu , J. , Li , D. et al. ( 2018 ). Free-standing TiO 2 –SiO 2 /PANI composite nanofibers for ammonia sensors . J. Mater. Sci. Mater. Electron. 29 : 3576 – 3583 .
- Liu , D. , Shi , Q. , Jin , S. et al. ( 2019 ). Self-assembled core-shell structured organic nanofibers fabricated by single-nozzle electrospinning for highly sensitive ammonia sensors . InfoMat 1 : 525 – 532 .
- Li , F. , Song , H. , Yu , W. et al. ( 2020 ). Electrospun TiO 2 //SnO 2 Janus nanofibers and its application in ethanol sensing . Mater. Lett. 262 : 127070 .
- Meng , J. , Li , H. , Zhao , L. et al. ( 2020 ). Triboelectric nanogenerator enhanced Schottky nanowire sensor for highly sensitive ethanol detection . Nano Lett. 20 ( 7 ): 4968 – 4974 .
- Wong , Y.C. , Ang , B.C. , Haseeb , A.S.M.A. et al. ( 2019 ). Review—conducting polymers as chemiresistive gas sensing materials: a review . J. Electrochem. Soc. 167 : 037503 .
- Liu , Y. , Li , J. , Wang , G. et al. ( 2020 ). One-step instantaneous detection of multiple military and improvised explosives facilitated by colorimetric reagent design . Anal. Chem. 92 ( 20 ): 13980 – 13988 .
- Khachornsakkul , K. , Hung , K.-H. , Chang , J.-J. et al. ( 2021 ). A rapid and highly sensitive paper-based colorimetric device for the on-site screening of ammonia gas . Analyst 146 : 2919 – 2927 .
- Kim , D.W. , Lee , J.H. , Kim , J.K. , and Jeong , U. ( 2020 ). Material aspects of triboelectric energy generation and sensors . NPG Asia Mater. 12 : 6 .
- Kenry and Lim , C.T. ( 2017 ). Nanofiber technology: current status and emerging developments . Prog. Polym. Sci. 70 : 1 – 17 .
- Lim , K. , Jo , Y.-M. , Yoon , J.-W. , and Lee , J.-H. ( 2019 ). Metal oxide patterns of one-dimensional nanofibers: on-demand, direct-write fabrication, and application as a novel platform for gas detection . J. Mater. Chem. A 7 : 24919 – 24928 .
- Kang , K. , Yang , D. , Park , J. et al. ( 2017 ). Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing towards highly integrated and multiplexed gas sensor applications . Sens. Actuators, B 250 : 574 – 583 .
- Ji , H. , Zeng , W. , and Li , Y. ( 2019 ). Gas sensing mechanisms of metal oxide semiconductors: a focus review . Nanoscale 11 : 22664 .
- Gurlo , A. and Riedel , R. ( 2007 ). In situ and operando spectroscopy for assessing mechanisms of gas sensing . Angew. Chem. Int. Ed. 46 : 3826 – 3848 .
- Sinju , K.R. , Bhangare , B. , Pathak , A. et al. ( 2022 ). ZnO nanowires based e-nose for the detection of H 2 S and NO 2 toxic gases . Mater. Sci. Semicond. Process. 137 : 106235 .
- Ramgir , N.S. , Bhusari , R. , Rawat , N.S. et al. ( 2020 ). TiO 2 /ZnO heterostructure nanowire based NO 2 sensor . Mater. Sci. Semicond. Process. 106 : 104770 .
- Kaur , M. , Kailasaganapathi , S. , Ramgir , N.S. et al. ( 2017 ). Gas dependent sensing mechanism in ZnO nanobelt sensor . Appl. Surf. Sci. 394 : 258 – 266 .
- Tian , J. , Chen , X. , Wang , T. et al. ( 2021 ). Modification of indium oxide nanofibers by polyoxometalate electron acceptor doping for enhancement of gas sensing at room temperature . Sens. Actuators, B 344 : 130227 .
- Bhangare , B. , Jagtap , S. , Ramgir , N.S. et al. ( 2017 ). Evaluation of humidity sensor based on PVP-RGO nanocomposites . IEEE Sensors 18 : 9097 – 9104 .
- Nair , K.G. , Ramakrishnan , V. , Unnathpadi , R. et al. ( 2020 ). Unraveling hydrogen adsorption kinetics of bimetallic Au−Pt nanoisland-functionalized carbon nanofibers for room temperature gas sensor applications . J. Phys. Chem. C 124 : 7144 – 7155 .
- Bhangare , B. , Ramgir , N.S. , Pathak , A. et al. ( 2020 ). Role of sensitizers in imparting the selective response of SnO 2 /RGO based nanohybrids towards H 2 S, NO 2 and H 2 . Mater. Sci. Semicond. Process. 105 : 104726 .
- Bhangare , B. , Ramgir , N.S. , Jagtap , S. et al. ( 2019 ). XPS and Kelvin probe studies of SnO 2 /RGO nanohybrids based NO 2 sensors . Appl. Surf. Sci. 487 : 918 – 929 .
-
Sanger , A.
,
Kang , S.B.
,
Jeong , M.H.
et al. (
2018
).
Adv. Sci.
5
:
1800816
.
10.1002/advs.201800816 Google Scholar
- Tian , X. , Yao , L. , Cui , X. et al. ( 2022 ). Novel Al-doped CdIn 2 O 4 nanofibers-based gas sensor for enhanced low-concentration n-butanol sensing . Sens. Actuators, B 351 : 130946 .
- Zhang , M. , Sui , N. , Wang , R. , and Zhang , T. ( 2021 ). The effect of shell thickness on gas sensing properties of core-shell fibres . Sens. Actuators, B 332 : 129456 .
- Ömür , B.C. ( 2019 ). Humidity effect on adsorption kinetics of ammonia onto electrospun SnO 2 nanofibers . Mater. Res. Express 6 : 045043 .
- Farzaneh , A. , Esrafili , M.D. , and Mermer , O. ( 2020 ). Development of TiO 2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations . Mater. Chem. Phys. 239 : 121981 .
- Hashemi , M.M. , Nikfarjam , A. , Hajghassem , H. , and Salehifar , N. ( 2020 ). Hierarchical dense array of ZnO nanowires spatially grown on ZnO/TiO 2 nanofibers and their ultraviolet activated gas sensing properties . J. Phys. Chem. C 124 : 322 – 335 .
- Li , J. , Gu , D. , Yang , Y. et al. ( 2019 ). UV light activated SnO 2 /ZnO nanofibers for gas sensing at room temperature . Front. Mater. 6 : 158 .
- Seif , A.M. , Nikfarjam , A. , and Hajghassem , H. ( 2019 ). UV enhanced ammonia gas sensing properties of PANI/TiO 2 core-shell nanofibers . Sens. Actuators, B 298 : 126906 .
- Li , W. , Guo , J. , Cai , L. et al. ( 2019 ). UV light irradiation enhanced gas sensor selectivity of NO 2 and SO 2 using rGO functionalized with hollow SnO 2 nanofibers . Sens. Actuators, B 290 : 443 – 452 .
- Kim , J.-H. , Mirzaei , A. , Kim , H.W. et al. ( 2019 ). Design of supersensitive and selective ZnO-nanofiber-based sensors for H 2 gas sensing by electron-beam irradiation . Sens. Actuators, B 293 : 210 – 223 .
- Chen , Q. , Wang , Y. , Wang , M. et al. ( 2019 ). Enhanced acetone sensor based on Au functionalized In-doped ZnSnO 3 nanofibers synthesized by electrospinning method . J. Colloid. Interface. Sci. 543 : 285 – 299 .
- Vishnuraj , R. , Dhakshinamoorthy , J. , Nair , K.G. et al. ( 2021 ). MEMS-compatible, gold nano island anchored 1D aligned ZnO heterojunction nanofibers: unveiling the NO 2 sensing mechanism with operando photoluminescence studies . Mater. Adv. 2 : 3000 – 3013 .
- Huang , B. , Zhang , Z. , Zhao , C. et al. ( 2018 ). Enhanced gas-sensing performance of ZnO@In 2 O 3 core@shellnanofibers prepared by coaxial electrospinning . Sens. Actuators, B 255 : 2248 – 2257 .
- Nair , K.G. , Vishnuraj , R. , and Pullithadathil , B. ( 2021 ). Integrated co-axial electrospinning for a singlestep production of 1D aligned bimetallic carbon fibers@AuNPs–PtNPs/NiNPs–PtNPs towards H 2 detection . Mater. Adv. , Advance Article.
- Liu , Y. , Gao , X. , Li , F. et al. ( 2018 ). Pt-In 2 O 3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO 2 at room temperature . Sens. Actuators, B 260 : 927 – 936 .
- Jaroenapibal , P. , Boonma , P. , Saksilaporn , N. et al. ( 2018 ). Improved NO 2 sensing performance of electrospun WO 3 nanofibers with silver doping . Sens. Actuators, B 255 : 1831 – 1840 .
- Huang , B. , Wang , Y. , Hu , Q. et al. ( 2018 ). J. Mater. Chem. C 6 : 10935 – 10943 .
- Hu , K. , Wang , F. , Shen , Z. et al. ( 2021 ). Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO–SnO 2 hollow nanofibers with enhanced H 2 gas sensing properties . Alloys Comp. 850 : 156663 .
- Rathore , P. and Schiffman , J.D. ( 2021 ). Beyond the single-nozzle: coaxial electrospinning enables innovative nanofiber chemistries, geometries, and applications . ACS Appl. Mater. Interfaces 13 ( 1 ): 48 – 66 .
- Nikfarjam , A. , Hosseini , S. , and Salehifar , N. ( 2017 ). Fabrication of a highly sensitive single aligned TiO 2 and gold nanoparticle embedded TiO 2 nano-fiber gas sensor . ACS Appl. Mater. Interfaces 9 : 15662 – 15671 .
- Chen , D. , Lei , S. , and Chen , Y. ( 2011 ). A single polyaniline nanofiber field effect transistor and its gas sensing mechanisms . Sensors 11 : 6509 – 6516 .
- Behera , B. , Joshi , R. , Anil Vishnu , G.K. et al. ( 2019 ). Electronic nose: a non-invasive technology for breath analysis of diabetes and lung cancer patients . Breath Res. 13 : 024001 .
- Wang , Y. , Yokota , T. , and Someya , T. ( 2021 ). Electrospun nanofiber-based soft electronics . NPG Asia Mater. 13 : 22 .
- Peng , X. , Dong , K. , Ye , C. et al. ( 2020 ). A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators . Sci. Adv. 6 : 1 – 10 .
- Wei , S. , Yin , R. , Tang , T. et al. ( 2019 ). Gas-permeable, irritation-free, transparent hydrogel contact lens devices with metal coated nanofiber mesh for eye interfacing . ACS Nano 13 : 7920 – 7929 .
- Yun , Y.J. , Kim , D.Y. , Hong , W.G. et al. ( 2018 ). Highly stretchable, mechanically stable, and weavable reduced graphene oxide yarn with high NO 2 sensitivity for wearable gas sensors . RSC Adv. 8 : 7615 – 7621 .