Room-Temperature Gas-Sensing Properties of Metal Oxide Nanowire/Graphene Hybrid Structures
Pooja Devi
1 Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001 India
Search for more papers by this authorSandeep Sharma
2 Department of Physics, Guru Nanak Dev University, Amritsar, Punjab, 143005 India
Search for more papers by this authorRajan Saini
3 Department of Physics, Akal University, Talwandi Sabo, Punjab, 151302 India
Search for more papers by this authorPooja Devi
1 Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001 India
Search for more papers by this authorSandeep Sharma
2 Department of Physics, Guru Nanak Dev University, Amritsar, Punjab, 143005 India
Search for more papers by this authorRajan Saini
3 Department of Physics, Akal University, Talwandi Sabo, Punjab, 151302 India
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
Graphene-based gas sensors have attracted significant attention due to advantages like high surface-to-volume ratio, excellent electrical conductivity, and good mechanical properties. Although great progress has been made in recent years toward improving the sensing performance of these sensors, still lack of selectivity and costly fabrication of graphene impose challenges toward the commercial application of these sensors. On the other hand, metal oxide nanowires (NWs) are well-established sensing materials for the detection of various oxidizing and reducing gases with excellent sensing properties and ease of manufacture. In this chapter, we shall discuss the application of metal oxide NWs and graphene-based hybrid structures toward the detection of various toxic gases at room temperature.
References
- Geim , A.K. and Novoselov , K.S. ( 2007 ). The rise of graphene . Nat. Mater. 6 : 183 – 191 .
- Choi , W. , Lahiri , I. , Seelaboyina , R. , and Kang , Y.S. ( 2010 ). Synthesis of graphene and its applications: a review . Crit. Rev. Solid State Mater. Sci. 35 : 52 – 71 .
- Schedin , F. , Geim , A.K. , Morozov , S.V. et al. ( 2007 ). Detection of individual gas molecules adsorbed on graphene . Nature 6 : 652 – 655 .
- Yuan , W. and Gaoquan , S. ( 2013 ). Graphene-based gas sensors . J. Mater. Chem. A 1 : 10078 – 10091 .
- Basu , S. and Bhattacharyya , P. ( 2012 ). Recent developments on graphene and graphene oxide based solid state gas sensors . Sens. Actuators, B 173 : 1 – 21 .
- Chatterjee , S.G. , Chatterjee , S. , Ray , A.K. , and Chakraborty , A.K. ( 2015 ). Graphene-metal oxide nanohybrids for toxic gas sensor: a review . Sens. Actuators, B 221 : 1170 – 1181 .
- Saqib Shams , S. , Zhang , R. , and Zhu , J. ( 2015 ). Graphene synthesis: a review . Mater. Sci. Poland 33 : 566 – 578 .
- Edwards , R.S. and Coleman , K.S. ( 2013 ). Graphene synthesis: relationship to applications . Nanoscale 5 : 38 – 51 .
- Yavari , F. , Castillo , E. , Gullapalli , H. et al. ( 2012 ). High sensitivity detection of NO 2 and NH 3 in air using chemical vapor deposition grown graphene . Appl. Phys. Lett. 100 : 203120 .
- Dan , Y. , Lu , Y. , Kybert , N.J. et al. ( 2009 ). Intrinsic response of graphene vapor sensors . Nano Lett. 9 : 1472 – 1475 .
- Li , W. , Geng , X. , Guo , Y. et al. ( 2011 ). Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection . ACS Nano 5 : 6955 – 6961 .
- Wang , T. , Sun , Z. , Huang , D. et al. ( 2017 ). Studies on NH 3 gas sensing by zinc oxide nanowire-reduced graphene oxide nanocomposites . Sens. Actuators, B 252 : 284 – 294 .
- Hu , N. , Wang , Y. , Chai , J. et al. ( 2012 ). Gas sensor based on p-phenylenediamine reduced graphene oxide . Sens. Actuators, B 163 : 107 – 114 .
- Sun , Z. , Huang , D. , Yang , Z. et al. ( 2015 ). ZnO nanowire-reduced graphene oxide hybrid based portable NH 3 gas sensing electron device . IEEE Electron Device Lett. 36 : 1376 – 1379 .
- Singh , S. and Sharma , S. ( 2022 ). Temperature dependent selective detection of ethanol and methanol using MoS 2 /TiO 2 composite . Sens. Actuators, B 350 : 130798 .
- Singh , S. , Deb , J. , Sarkar , U. , and Sharma , S. ( 2021 ). MoS 2 /WO 3 nanosheets for detection of ammonia . ACS Appl. Nano Mater. 4 : 2594 – 2605 .
- Singh , S. and Sharma , S. ( 2022 ). Temperature-based selective detection of hydrogen Sulfide and ethanol with MoS 2 /WO 3 composite . ACS Omega .
- Kim , S. , Lee , J.M. , Lee , D.H. , and Park , W.I. ( 2012 ). The effect of thermal annealing of graphene under ammonia atmosphere on its electrical properties and contact to p-GaN . Thin Solid Films 2013, 546, 246–249. The proceedings of International Union of the Materials Research Society-International Conference in Asia 2012- IUMRS-ICA 2012 .
- Cui , S. , Pu , H. , Mattson , E.C. et al. ( 2014 ). Ultrasensitive chemical sensing through facile tuning defects and functional groups in reduced graphene oxide . Anal. Chem. 86 : 7516 – 7522 .
- Yi , J. , Lee , J.M. , and Park , W.I. ( 2011 ). Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors . Sens. Actuators, B 155 : 264 – 269 .
- Singh , S. , Sharma , S. , Singh , R.C. , and Sharma , S. ( 2020 ). Hydrothermally synthesized MoS 2 -multiwalled carbon nanotube composite as a novel room-temperature ammonia sensing platform . Appl. Surf. Sci. 532 : 147373 .
- Anasthasiya , A.N.A. , Kishore , K.R. , Rai , P.K. , and Jeyaprakash , B.G. ( 2018 ). Highly sensitive graphene oxide functionalized ZnO nanowires for ammonia vapour detection at ambient temperature . Sens. Actuators, B 255 : 1064 – 1071 .
- Deng , S. , Tjoa , V. , Fan , H.M. et al. ( 2012 ). Reduced graphene oxide conjugated Cu 2 O nanowire mesocrystals for high-performance NO 2 gas sensor . J. Am. Chem. Soc. 134 : 4905 – 4917 .
- Zaaba , N. ; Foo , K. ; Hashim , U. ; Tan , S. ; Liu , W.-W. ; Voon , C . ( 2017 ). Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence . Procedia Engineering 2017, 184, 469–477, Advances in Material Processing Technologies Conference .
- Huang , M. , Wang , Y. , Ying , S. et al. ( 2021 ). Synthesis of Cu 2 O modified reduced graphene oxide for NO 2 sensors . Sensors 21 .
- Van Quang , V. , Van Dung , N. , Sy Trong , N. et al. ( 2014 ). Outstanding gas-sensing performance of graphene/SnO 2 nanowire Schottky junctions . Appl. Phys. Lett. 105 : 013107 .
- Song , Z. , Wei , Z. , Wang , B. et al. ( 2016 ). Sensitive room-temperature H 2 S gas sensors employing SnO 2 quantum wire/reduced graphene oxide nanocomposites . Chem. Mater. 28 : 1205 – 1212 .
-
Liu , J.W.
,
Wu , J.
,
Ahmad , M.Z.
, and
Wlodarski , W.
(
2013
).
Hybrid aligned zinc oxide array on CVD graphene for hydrogen sensing
. In:
In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems
(Transducers & Eurosensors XXVII) 2013 Jun 16,
194
–
197
.
IEEE
.
10.1109/Transducers.2013.6626735 Google Scholar
- Chou , C.-Y. , Tseng , S.-F. , Chanh , T.-L. et al. ( 2020 ). Controlled bridge growth of ZnO nanowires on laser-scribed graphene-based devices for NO gas detection . Appl. Surf. Sci. 508 : 145204 .
- Li , W. , Guo , J. , Cai , L. et al. ( 2019 ). UV light irradiation enhanced gas sensor selectivity of NO 2 and SO 2 using rGO functionalized with hollow SnO 2 nanofibers . Sens. Actuators B. 290 : 443 – 452 .