Synthesis and Gas-Sensing Application of 1D Semiconducting Hybrid Nanostructures
Nguyen D. Cuong
1 Hue University, University of Sciences, Faculty of Chemistry, 77 Nguyen Hue, Phu Nhuan Ward, Hue, 530000 Vietnam
2 Hue University, School of Hospitality and Tourism, 22 Lam Hoang, Vy Da Ward, Hue, 530000 Vietnam
Search for more papers by this authorNguyen Van Hieu
3 Phenikaa University, Faculty of Electrical and Electronic Engineering, Yen Nghia Ward, Ha Dong District, Hanoi, 100000 Vietnam
Search for more papers by this authorNguyen D. Cuong
1 Hue University, University of Sciences, Faculty of Chemistry, 77 Nguyen Hue, Phu Nhuan Ward, Hue, 530000 Vietnam
2 Hue University, School of Hospitality and Tourism, 22 Lam Hoang, Vy Da Ward, Hue, 530000 Vietnam
Search for more papers by this authorNguyen Van Hieu
3 Phenikaa University, Faculty of Electrical and Electronic Engineering, Yen Nghia Ward, Ha Dong District, Hanoi, 100000 Vietnam
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
One-dimensional (1D) materials have shown exciting new prospects for application in gas sensors due to their extraordinary physical and chemical properties, large surface-to-volume ratios, well-defined crystal orientations, and stability. As a result, gas-sensing capacity of 1D-nanostructured sensors is much more sensitive than these make from conventional nanostructures. However, the sensors based on pure single-phase 1D nanostructures still have some disadvantages such as weak response, poor selectivity, and operating at high temperature. The 1D hybrid nanostructures that composed of two or more different components with multiple functions have been considered as the potential strategy to develop gas-sensing efficiency. The unique gas-sensing features of these materials originate from the synergistic effect in the heterojunction structures. In this chapter, we will review the recent development of synthetic strategy of 1D semiconducting hybrid nanostructures as well as their application for gas-sensing fields. The electric sensitization and the chemical sensitization that play an important role to promote sensing performance of 1D hybrid-nanostructured sensors will be discussed carefully. Finally, some future trends and perspectives in these research areas will be also be outlined.
References
- Cuong , N.D. , Hoa , T.T. , Khieu , D.Q. et al. ( 2012 ). Gas sensor based on nanoporous hematite nanoparticles: effect of synthesis pathways on morphology and gas sensing properties . Curr. Appl. Phys. 12 : 1355 – 1360 .
- Dai , J. , Ogbeide , O. , Macadam , N. et al. ( 2020 ). Printed gas sensors . Chem. Soc. Rev. 49 : 1756 – 1789 . https://doi.org/10.1039/C9CS00459A .
-
Bales , E.
,
Nikzad , N.
,
Quick , N.
et al. (
2019
).
Personal pollution monitoring: mobile real-time air quality in daily life
.
Pers. Ubiquitous Comput.
23
:
309
–
328
.
https://doi.org/10.1007/s00779-019-01206-3
.
10.1007/s00779?019?01206?3 Google Scholar
- Di Natale , C. , Paolesse , R. , Martinelli , E. , and Capuano , R. ( 2014 ). Solid-state gas sensors for breath analysis: a review . Anal. Chim. Acta 824 : 1 – 17 . https://doi.org/10.1016/j.aca.2014.03.014 .
- Nunes , D. , Pimentel , A. , Gonçalves , A. et al. ( 2019 ). Metal oxide nanostructures for sensor applications . Semicond. Sci. Technol. 34 : 043001 . https://doi.org/10.1088/1361-6641/ab011e .
- Li , J. , Lu , Y. , Ye , Q. et al. ( 2003 ). Carbon nanotube sensors for gas and organic vapor detection . Nano Lett. 3 : 929 – 933 . https://doi.org/10.1021/nl034220x .
- Han , S.T. , Peng , H. , Sun , Q. et al. ( 2017 ). An overview of the development of flexible sensors . Adv. Mater. 29 : 1 – 22 . https://doi.org/10.1002/adma.201700375 .
-
Feynman , R.P.
(
1992
).
There's plenty of room at the bottom [data storage]
.
J. Microelectromech. Syst.
1
:
60
–
66
.
https://doi.org/10.1109/84.128057
.
10.1109/84.128057 Google Scholar
- Quang , P.L. , Cuong , N.D. , Hoa , T.T. et al. ( 2018 ). Simple post-synthesis of mesoporous p-type Co 3 O 4 nanochains for enhanced H 2 S gas sensing performance . Sens. Actuators, B 270 : 158 – 166 . https://doi.org/10.1016/j.snb.2018.05.026 .
- Trung , D.D. , Cuong , N.D. , Trung , K.Q. et al. ( 2018 ). Controlled synthesis of manganese tungstate nanorods for highly selective NH 3 gas sensor . J. Alloys Compd. 735 : 787 – 794 .
-
Thu , N.T.A.
,
Cuong , N.D.
,
Nguyen , L.C.
et al. (
2017
).
Fe
2
O
3
nanoporous network fabricated from Fe
3
O
4
/reduced graphene oxide for high-performance ethanol gas sensor
.
Sens. Actuators, B
255
:
3275
–
3283
.
10.1016/j.snb.2017.09.154 Google Scholar
- Huang , C. , Chen , X. , Xue , Z. , and Wang , T. ( 2020 ). Effect of structure: a new insight into nanoparticle assemblies from inanimate to animate . Sci. Adv. 6 : https://doi.org/10.1126/sciadv.aba1321 .
- Guo , J. , Zhang , J. , Zhu , M. et al. ( 2014 ). High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles . Sens. Actuators, B 199 : 339 – 345 . https://doi.org/10.1016/j.snb.2014.04.010 .
- Wang , Y. and Yeow , J.T.W. ( 2009 ). A review of carbon nanotubes-based gas sensors . J. Sens. 2009 : 1 – 24 . https://doi.org/10.1155/2009/493904 .
- Chen , G. , Paronyan , T.M. , Pigos , E.M. , and Harutyunyan , A.R. ( 2012 ). Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination . Sci. Rep. 2 : 343 . https://doi.org/10.1038/srep00343 .
- Mittal , M. and Kumar , A. ( 2014 ). Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning . Sens. Actuators, B 203 : 349 – 362 . https://doi.org/10.1016/j.snb.2014.05.080 .
- Hu , Q. , Zhang , W. , Wang , X. et al. ( 2021 ). Binder-free CuO nanoneedle arrays based tube-type sensor for H 2 S gas sensing . Sens. Actuators, B 326 : 128993 . https://doi.org/10.1016/j.snb.2020.128993 .
- Xu , S. , Zhao , H. , Xu , Y. et al. ( 2018 ). Carrier mobility-dominated gas sensing: a room-temperature gas-sensing mode for SnO 2 nanorod array sensors . ACS Appl. Mater. Interfaces 10 : 13895 – 13902 . https://doi.org/10.1021/acsami.8b03953 .
-
Vomiero , A.
,
Comini , E.
, and
Sberveglieri , G.
(
2012
).
Oxide nanowires for new chemical sensor devices
. In:
Oxide Ultrathin Film
(ed.
G. Pacchioni
and
S. Valeri
),
329
–
343
.
https://doi.org/10.1002/9783527640171.ch14
.
KGaA, Weinheim, Germany
:
Wiley-VCH Verlag GmbH & Co.
10.1002/9783527640171.ch14 Google Scholar
- Comini , E. ( 2020 ). Metal oxides nanowires chemical/gas sensors: recent advances . Mater. Today Adv. 7 : 100099 . https://doi.org/10.1016/j.mtadv.2020.100099 .
- Thong , L.V. , Loan , L.T.N. , and Van Hieu , N. ( 2010 ). Comparative study of gas sensor performance of SnO 2 nanowires and their hierarchical nanostructures . Sens. Actuators, B https://doi.org/10.1016/j.snb.2010.07.033 .
- Wang , B. , Zhu , L.F. , Yang , Y.H. et al. ( 2008 ). Fabrication of a SnO 2 nanowire gas sensor and sensor performance for hydrogen . J. Phys. Chem. C 112 : 6643 – 6647 . https://doi.org/10.1021/jp8003147 .
- Zhang , J. , Guo , J. , Xu , H. , and Cao , B. ( 2013 ). Reactive-template fabrication of porous SnO 2 nanotubes and their remarkable gas-sensing performance . ACS Appl. Mater. Interfaces 5 : 7893 – 7898 . https://doi.org/10.1021/am4019884 .
- Kim , J.H. , Mirzaei , A. , Woo Kim , H. et al. ( 2019 ). Design of supersensitive and selective ZnO-nanofiber-based sensors for H 2 gas sensing by electron-beam irradiation . Sens. Actuators, B 293 : 210 – 223 . https://doi.org/10.1016/j.snb.2019.04.113 .
- Kaur , N. , Singh , M. , and Comini , E. ( 2020 ). One-dimensional nanostructured oxide chemoresistive sensors . Langmuir 36 : 6326 – 6344 . https://doi.org/10.1021/acs.langmuir.0c00701 .
- Tan , C. , Chen , J. , Wu , X.-J. , and Zhang , H. ( 2018 ). Epitaxial growth of hybrid nanostructures . Nat. Rev. Mater. 3 : 17089 . https://doi.org/10.1038/natrevmats.2017.89 .
- Wang , L. , Wang , S. , Xu , M. et al. ( 2013 ). A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene . Phys. Chem. Chem. Phys. 15 : 17179 . https://doi.org/10.1039/c3cp52392f .
- Cao , J. , Wang , Z. , Wang , R. et al. ( 2015 ). Synthesis of core–shell α-Fe 2 O 3 @NiO nanofibers with hollow structures and their enhanced HCHO sensing properties . J. Mater. Chem. A 3 : 5635 – 5641 . https://doi.org/10.1039/C4TA06892K .
- Gong , J. , Li , Y. , Hu , Z. et al. ( 2010 ). Ultrasensitive NH 3 gas sensor from polyaniline nanograin enchased TiO 2 fibers . J. Phys. Chem. C 114 : 9970 – 9974 . https://doi.org/10.1021/jp100685r .
- Huyen , D.N. , Tung , N.T. , Vinh , T.D. , and Thien , N.D. ( 2012 ). Synergistic effects in the gas sensitivity of polypyrrole/single wall carbon nanotube composites . Sensors 12 : 7965 – 7974 . https://doi.org/10.3390/s120607965 .
- Choi , K.J. and Jang , H.W. ( 2010 ). One-dimensional oxide nanostructures as gas-sensing materials: review and issues . Sensors 10 : 4083 – 4099 . https://doi.org/10.3390/s100404083 .
-
Zaporotskova , I.V.
,
Boroznina , N.P.
,
Parkhomenko , Y.N.
, and
Kozhitov , L.V.
(
2016
).
Carbon nanotubes: sensor properties. A review
.
Mod. Electron. Mater.
2
:
95
–
105
.
https://doi.org/10.1016/j.moem.2017.02.002
.
10.1016/j.moem.2017.02.002 Google Scholar
- Yang , S. , Lei , G. , Xu , H. et al. ( 2021 ). Metal oxide based heterojunctions for gas sensors: a review . Nanomaterials 11 : 1026 . https://doi.org/10.3390/nano11041026 .
- Zhang , J. , Liu , X. , Neri , G. , and Pinna , N. ( 2016 ). Nanostructured materials for room-temperature gas sensors . Adv. Mater. 28 : 795 – 831 . https://doi.org/10.1002/adma.201503825 .
- Lee , J.-H. ( 2009 ). Gas sensors using hierarchical and hollow oxide nanostructures: overview . Sens. Actuators, B 140 : 319 – 336 . https://doi.org/10.1016/j.snb.2009.04.026 .
- Cuong , N.D. , Hoa , T.T. , Khieu , D.Q. et al. ( 2012 ). Synthesis, characterization, and comparative gas-sensing properties of Fe 2 O 3 prepared from Fe 3 O 4 and Fe 3 O 4 -chitosan . J. Alloys Compd. 523 : 120 – 126 .
- Broza , Y.Y. , Vishinkin , R. , Barash , O. et al. ( 2018 ). Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation . Chem. Soc. Rev. 47 : 4781 – 4859 . https://doi.org/10.1039/C8CS00317C .
- Kim , J.-H. , Mirzaei , A. , Kim , H.W. , and Kim , S.S. ( 2019 ). Pd functionalization on ZnO nanowires for enhanced sensitivity and selectivity to hydrogen gas . Sens. Actuators, B 297 : 126693 . https://doi.org/10.1016/j.snb.2019.126693 .
-
Cai , Z.
and
Park , S.
(
2020
).
Synthesis of Pd nanoparticle-decorated SnO
2
nanowires and determination of the optimum quantity of Pd nanoparticles for highly sensitive and selective hydrogen gas sensor
.
Sens. Actuators, B
322
:
128651
.
https://doi.org/10.1016/j.snb.2020.128651
.
10.1016/j.snb.2020.128651 Google Scholar
- Ramgir , N.S. , Sharma , P.K. , Datta , N. et al. ( 2013 ). Room temperature H 2 S sensor based on Au modified ZnO nanowires . Sens. Actuators, B 186 : 718 – 726 . https://doi.org/10.1016/j.snb.2013.06.070 .
- Yu , A. , Li , Z. , and Yi , J. ( 2021 ). Selective detection of parts-per-billion H 2 S with Pt-decorated ZnO nanorods . Sens. Actuators, B 333 : 129545 . https://doi.org/10.1016/j.snb.2021.129545 .
- Kılıç , A. , Alev , O. , Özdemir , O. et al. ( 2021 ). The effect of Ag loading on gas sensor properties of TiO 2 nanorods . Thin Solid Films 726 : 138662 . https://doi.org/10.1016/j.tsf.2021.138662 .
- Xing , R. , Xu , L. , Song , J. et al. ( 2015 ). Wei Song, preparation and gas sensing properties of In 2 O 3 /Au nanorods for detection of volatile organic compounds in exhaled breath . Sci. Rep. 5 : 10717 . https://doi.org/10.1038/srep10717 .
- Song , X. , Xu , Q. , Zhang , T. et al. ( 2018 ). Room-temperature, high selectivity and low-ppm-level triethylamine sensor assembled with Au decahedrons-decorated porous α-Fe 2 O 3 nanorods directly grown on flat substrate . Sens. Actuators, B 268 : 170 – 181 . https://doi.org/10.1016/j.snb.2018.04.096 .
- Park , S. , Kim , H. , Jin , C. et al. ( 2012 ). Enhanced CO gas sensing properties of Pt-functionalized WO 3 nanorods . Thermochim. Acta 542 : 69 – 73 . https://doi.org/10.1016/j.tca.2011.12.002 .
- Xiang , Q. , Meng , G.F. , Zhao , H.B. et al. ( 2010 ). Au nanoparticle modified WO 3 nanorods with their enhanced properties for photocatalysis and gas sensing . J. Phys. Chem. C 114 : 2049 – 2055 . https://doi.org/10.1021/jp909742d .
- Li , Z. , Li , H. , Wu , Z. et al. ( 2019 ). Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature . Mater. Horiz. 6 : 470 – 506 . https://doi.org/10.1039/C8MH01365A .
- Trung , D.D. , Hoa , N.D. , Van Tong , P. et al. ( 2014 ). Effective decoration of Pd nanoparticles on the surface of SnO 2 nanowires for enhancement of CO gas-sensing performance . J. Hazard. Mater. 265 : 124 – 132 . https://doi.org/10.1016/j.jhazmat.2013.11.054 .
- Fan , L. , Xu , N. , Chen , H. et al. ( 2021 ). A millisecond response and microwatt power-consumption gas sensor: realization based on cross-stacked individual Pt-coated WO 3 nanorods . Sens. Actuators, B 346 : 130545 . https://doi.org/10.1016/j.snb.2021.130545 .
- Kolmakov , A. , Klenov , D.O. , Lilach , Y. et al. ( 2005 ). Enhanced gas sensing by individual SnO 2 nanowires and nanobelts functionalized with Pd catalyst particles . Nano Lett. 5 : 667 – 673 . https://doi.org/10.1021/nl050082v .
- Singh , N. , Gupta , R.K. , and Lee , P.S. ( 2011 ). Gold-nanoparticle-functionalized In 2 O 3 nanowires as CO gas sensors with a significant enhancement in response . ACS Appl. Mater. Interfaces 3 : 2246 – 2252 . https://doi.org/10.1021/am101259t .
- Yang , D.-J. , Kamienchick , I. , Youn , D.Y. et al. ( 2010 ). Ultrasensitive and highly selective gas sensors based on electrospun SnO 2 nanofibers modified by Pd loading . Adv. Funct. Mater. 20 : 4258 – 4264 . https://doi.org/10.1002/adfm.201001251 .
- Lai , H.-Y. and Chen , C.-H. ( 2012 ). Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In 2 O 3 flower-like nanobundles . J. Mater. Chem. 22 : 13204 . https://doi.org/10.1039/c2jm31180a .
- Yan , S. , Li , Z. , Li , H. et al. ( 2018 ). Ultra-sensitive room-temperature H 2 S sensor using Ag–In 2 O 3 nanorod composites . J. Mater. Sci. 53 : 16331 – 16344 . https://doi.org/10.1007/s10853-018-2789-z .
- Chen , X. , Shen , Y. , Zhou , P. et al. ( 2019 ). NO 2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization . Sens. Actuators, B 280 : 151 – 161 . https://doi.org/10.1016/j.snb.2018.10.063 .
- Shingange , K. , Tshabalala , Z.P. , Ntwaeaborwa , O.M. et al. ( 2016 ). Highly selective NH 3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method . J. Colloid Interface Sci. 479 : 127 – 138 . https://doi.org/10.1016/j.jcis.2016.06.046 .
- Lee , J.M. , Park , J. , Kim , S. et al. ( 2010 ). Ultra-sensitive hydrogen gas sensors based on Pd-decorated tin dioxide nanostructures: room temperature operating sensors . Int. J. Hydrogen Energy 35 : 12568 – 12573 . https://doi.org/10.1016/j.ijhydene.2010.08.026 .
- Kim , S.S. , Park , J.Y. , Choi , S.-W. et al. ( 2010 ). Significant enhancement of the sensing characteristics of In 2 O 3 nanowires by functionalization with Pt nanoparticles . Nanotechnology 21 : 415502 . https://doi.org/10.1088/0957-4484/21/41/415502 .
- Choi , S.-W. and Kim , S.S. ( 2012 ). Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization . Sens. Actuators, B 168 : 8 – 13 . https://doi.org/10.1016/j.snb.2011.12.100 .
- Tu , Y. , Kyle , C. , Luo , H. et al. ( 2020 ). Ammonia gas sensor response of a vertical zinc oxide nanorod-gold junction diode at room temperature . ACS Sens. 5 : 3568 – 3575 . https://doi.org/10.1021/acssensors.0c01769 .
- Choi , S.-W. , Katoch , A. , Sun , G.-J. , and Kim , S.S. ( 2013 ). Bimetallic Pd/Pt nanoparticle-functionalized SnO 2 nanowires for fast response and recovery to NO 2 . Sens. Actuators, B 181 : 446 – 453 . https://doi.org/10.1016/j.snb.2013.02.007 .
- Hassan , K. and Chung , G.-S. ( 2017 ). Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection . Sens. Actuators, B 239 : 824 – 833 . https://doi.org/10.1016/j.snb.2016.08.084 .
- Ren , S. and Liu , W. ( 2016 ). One-step photochemical deposition of PdAu alloyed nanoparticles on TiO 2 nanowires for ultra-sensitive H 2 detection . J. Mater. Chem. A 4 : 2236 – 2245 . https://doi.org/10.1039/C5TA06917C .
- Li , G. , Ma , Z. , Hu , Q. et al. ( 2021 ). PdPt nanoparticle-functionalized α-Fe 2 O 3 hollow nanorods for triethylamine sensing . ACS Appl. Nano Mater. 4 : 10921 – 10930 . https://doi.org/10.1021/acsanm.1c02377 .
- Vahl , A. , Lupan , O. , Santos-Carballal , D. et al. ( 2020 ). Surface functionalization of ZnO:Ag columnar thin films with AgAu and AgPt bimetallic alloy nanoparticles as an efficient pathway for highly sensitive gas discrimination and early hazard detection in batteries . J. Mater. Chem. A 8 : 16246 – 16264 . https://doi.org/10.1039/D0TA03224G .
- Zhu , L. , Hong , M. , and Ho , G.W. ( 2015 ). Hierarchical assembly of SnO 2 /ZnO nanostructures for enhanced photocatalytic performance . Sci. Rep. 5 : 11609 . https://doi.org/10.1038/srep11609 .
- Kaneti , Y.V. , Zakaria , Q.M.D. , Zhang , Z. et al. ( 2014 ). Solvothermal synthesis of ZnO-decorated α-Fe 2 O 3 nanorods with highly enhanced gas-sensing performance toward n -butanol . J. Mater. Chem. A 2 : 13283 – 13292 . https://doi.org/10.1039/C4TA01837K .
- Xue , X. , Xing , L. , Chen , Y. et al. ( 2008 ). Synthesis and H 2 S sensing properties of CuO−SnO 2 core/shell PN-junction nanorods . J. Phys. Chem. C 112 : 12157 – 12160 . https://doi.org/10.1021/jp8037818 .
- Vuong , N.M. , Chinh , N.D. , Huy , B.T. , and Lee , Y.-I. ( 2016 ). CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H 2 S gas sensors . Sci. Rep. 6 : 26736 . https://doi.org/10.1038/srep26736 .
- Chakraborty , M. , Roy , D. , Biswas , A. et al. ( 2016 ). Structural, optical and photo-electrochemical properties of hydrothermally grown ZnO nanorods arrays covered with α-Fe 2 O 3 nanoparticles . RSC Adv. 6 : 75063 – 75072 . https://doi.org/10.1039/C6RA15752A .
- Gandha , K. , Mohapatra , J. , Hossain , M.K. et al. ( 2016 ). Mesoporous iron oxide nanowires: synthesis, magnetic and photocatalytic properties . RSC Adv. 6 : 90537 – 90546 . https://doi.org/10.1039/C6RA18530D .
- Mao , Y. , Cheng , Y. , Wang , J. et al. ( 2016 ). Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance . New J. Chem. 40 : 107 – 112 . https://doi.org/10.1039/C5NJ01815C .
- Wei , C. , Xu , J. , Shi , S. et al. ( 2019 ). Self-powered visible-blind UV photodetectors based on p-NiO nanoflakes/n-ZnO nanorod arrays with an MgO interfacial layer . J. Mater. Chem. C 7 : 9369 – 9379 . https://doi.org/10.1039/C9TC01179J .
- Liang , Y.Q. , Cui , Z.D. , Zhu , S.L. et al. ( 2013 ). Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co 3 O 4 /n-TiO 2 heterojunction synthesized at low temperature . Nanoscale 5 : 10916 . https://doi.org/10.1039/c3nr03616b .
- Xu , Y. , Ding , Y. , Zhang , L. , and Zhang , X. ( 2021 ). Highly sensitive enzyme-free glucose sensor based on CuO–NiO nanocomposites by electrospinning . Compos. Commun. 25 : 100687 . https://doi.org/10.1016/j.coco.2021.100687 .
- Li , D. , Zhang , Y. , Liu , D. et al. ( 2016 ). Hierarchical core/shell ZnO/NiO nanoheterojunctions synthesized by ultrasonic spray pyrolysis and their gas-sensing performance . CrystEngComm 18 : 8101 – 8107 . https://doi.org/10.1039/C6CE01621A .
- Khoang , N.D. , Trung , D.D. , Van Duy , N. et al. ( 2012 ). Design of SnO 2 /ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance . Sens. Actuators, B 174 : 594 – 601 . https://doi.org/10.1016/j.snb.2012.07.118 .
- Lou , Z. , Li , F. , Deng , J. et al. ( 2013 ). Branch-like hierarchical heterostructure (α-Fe 2 O 3 /TiO 2 ): a novel sensing material for trimethylamine gas sensor . ACS Appl. Mater. Interfaces 5 : 12310 – 12316 . https://doi.org/10.1021/am402532v .
- Wang , L. , Kang , Y. , Wang , Y. et al. ( 2012 ). CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H 2 S detection . Mater. Sci. Eng., C 32 : 2079 – 2085 . https://doi.org/10.1016/j.msec.2012.05.042 .
- Kim , H.J. and Lee , J.H. ( 2014 ). Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview . Sens. Actuators, B https://doi.org/10.1016/j.snb.2013.11.005 .
- Nakate , U.T. , Yu , Y.T. , and Park , S. ( 2021 ). High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO 3 nanorods . Sens. Actuators, B 344 : 130264 . https://doi.org/10.1016/j.snb.2021.130264 .
- Kim , J.-H. , Lee , J.-H. , Mirzaei , A. et al. ( 2017 ). Optimization and gas sensing mechanism of n-SnO 2 -p-Co 3 O 4 composite nanofibers . Sens. Actuators, B 248 : 500 – 511 . https://doi.org/10.1016/j.snb.2017.04.029 .
- Suh , J.M. , Sohn , W. , Shim , Y.-S. et al. ( 2018 ). p–p Heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds . ACS Appl. Mater. Interfaces 10 : 1050 – 1058 . https://doi.org/10.1021/acsami.7b14545 .
- Ju , D.-X. , Xu , H.-Y. , Qiu , Z.-W. et al. ( 2015 ). Near room temperature, fast-response, and highly sensitive triethylamine sensor assembled with Au-loaded ZnO/SnO 2 core–shell nanorods on flat alumina substrates . ACS Appl. Mater. Interfaces 7 : 19163 – 19171 . https://doi.org/10.1021/acsami.5b04904 .
-
Zhang , B.
,
Huang , Y.
,
Vinluan , R.
et al. (
2020
).
Enhancing ZnO nanowire gas sensors using Au/Fe
2
O
3
hybrid nanoparticle decoration
.
Nanotechnology
31
:
325505
.
https://doi.org/10.1088/1361-6528/ab89cf
.
10.1088/1361?6528/ab89cf Google Scholar
- Wu , X. , Wang , H. , Wang , J. et al. ( 2022 ). VOCs gas sensor based on MOFs derived porous Au@Cr 2 O 3 -In 2 O 3 nanorods for breath analysis . Colloids Surf., A 632 : 127752 . https://doi.org/10.1016/j.colsurfa.2021.127752 .
- Nylabder , C. , Armgrath , M. , and Lundstrom , I. ( 1983 ). An ammonia detector based on a conducting polymer . In: Proceedings of the International Meeting on Chemical Sensors ; Fukuoka, Japan, 203 – 207 .
- Kaushik , A. , Kumar , R. , Arya , S.K. et al. ( 2015 ). Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring . Chem. Rev. 115 : 4571 – 4606 . https://doi.org/10.1021/cr400659h .
- Yan , Y. , Yang , G. , Xu , J.-L. et al. ( 2020 ). Conducting polymer-inorganic nanocomposite-based gas sensors: a review . Sci. Technol. Adv. Mater. 21 : 768 – 786 . https://doi.org/10.1080/14686996.2020.1820845 .
-
Jia , A.
,
Liu , B.
,
Liu , H.
et al. (
2020
).
Interface design of SnO
2
@PANI nanotube with enhanced sensing performance for ammonia detection at room temperature
.
Front. Chem.
8
:
https://doi.org/10.3389/fchem.2020.00383
.
10.3389/fchem.2020.00383 Google Scholar
- Liu , C. , Tai , H. , Zhang , P. et al. ( 2018 ). A high-performance flexible gas sensor based on self-assembled PANI-CeO 2 nanocomposite thin film for trace-level NH 3 detection at room temperature . Sens. Actuators, B 261 : 587 – 597 . https://doi.org/10.1016/j.snb.2017.12.022 .
- Li , Y. , Zhao , H. , Ban , H. , and Yang , M. ( 2017 ). Composites of Fe 2 O 3 nanosheets with polyaniline: preparation, gas sensing properties and sensing mechanism . Sens. Actuators, B 245 : 34 – 43 . https://doi.org/10.1016/j.snb.2017.01.103 .
- Li , S. , Lin , P. , Zhao , L. et al. ( 2018 ). The room temperature gas sensor based on Polyaniline@flower-like WO 3 nanocomposites and flexible PET substrate for NH 3 detection . Sens. Actuators, B 259 : 505 – 513 . https://doi.org/10.1016/j.snb.2017.11.081 .
- Li , Y. , Ban , H. , and Yang , M. ( 2016 ). Highly sensitive NH 3 gas sensors based on novel polypyrrole-coated SnO 2 nanosheet nanocomposites . Sens. Actuators, B 224 : 449 – 457 . https://doi.org/10.1016/j.snb.2015.10.078 .
- Bandgar , D.K. , Navale , S.T. , Naushad , M. et al. ( 2015 ). Ultra-sensitive polyaniline–iron oxide nanocomposite room temperature flexible ammonia sensor . RSC Adv. 5 : 68964 – 68971 . https://doi.org/10.1039/C5RA11512D .
- Shahmoradi , A. , Hosseini , A. , Akbarinejad , A. , and Alizadeh , N. ( 2021 ). Noninvasive detection of ammonia in the breath of hemodialysis patients using a highly sensitive ammonia sensor based on a polypyrrole/sulfonated graphene nanocomposite . Anal. Chem. 93 : 6706 – 6714 . https://doi.org/10.1021/acs.analchem.1c00171 .
- Dhawale , D.S. , Salunkhe , R.R. , Patil , U.M. et al. ( 2008 ). Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO 2 heterojunction . Sens. Actuators, B 134 : 988 – 992 . https://doi.org/10.1016/j.snb.2008.07.003 .
- Zhang , J. , Wang , S. , Xu , M. et al. ( 2009 ). Polypyrrole-coated SnO 2 hollow spheres and their application for ammonia sensor . J. Phys. Chem. C 113 : 1662 – 1665 . https://doi.org/10.1021/jp8096633 .
- Hosono , K. , Matsubara , I. , Murayama , N. et al. ( 2005 ). Synthesis of polypyrrole/MoO 3 hybrid thin films and their volatile organic compound gas-sensing properties . Chem. Mater. 17 : 349 – 354 . https://doi.org/10.1021/cm0492641 .
-
Yenorkar , S.M.
,
Zade , R.N.
,
Mude , B.M.
et al. (
2021
).
Polymer-metal oxide composite (PPy–MoO
3
) for ammonia and ethanol gas sensor
.
Macromol. Symp.
400
:
2100049
.
https://doi.org/10.1002/masy.202100049
.
10.1002/masy.202100049 Google Scholar
- Geng , L. ( 2009 ). Gas sensitivity of polyaniline/SnO 2 hybrids to volatile organic compounds . Trans. Nonferrous Met. Soc. China 19 : s678 – s683 . https://doi.org/10.1016/S1003-6326(10)60131-8 .
-
Arora , R.
,
Mandal , U.
,
Sharma , P.
, and
Srivastav , A.
(
2017
).
Nano composite film based on conducting polymer, SnO
2
and PVA
.
Mater. Today Proc.
4
:
2733
–
2738
.
https://doi.org/10.1016/j.matpr.2017.02.150
.
10.1016/j.matpr.2017.02.150 Google Scholar
-
Liu , A.
,
Lv , S.
,
Jiang , L.
et al. (
2021
).
The gas sensor utilizing polyaniline/MoS
2
nanosheets/SnO
2
nanotubes for the room temperature detection of ammonia
.
Sens. Actuators, B
332
:
129444
.
https://doi.org/10.1016/j.snb.2021.129444
.
10.1016/j.snb.2021.129444 Google Scholar
- Ram , M.K. , Yavuz , O. , and Aldissi , M. ( 2005 ). NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite . Synth. Met. 151 : 77 – 84 . https://doi.org/10.1016/j.synthmet.2005.03.021 .
- Zhu , S. , Wei , W. , Chen , X. et al. ( 2012 ). Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement . J. Solid State Chem. 190 : 174 – 179 . https://doi.org/10.1016/j.jssc.2012.02.028 .
- Jun , J. , Lee , J.S. , Shin , D.H. et al. ( 2017 ). Fabrication of a one-dimensional tube-in-tube polypyrrole/tin oxide structure for highly sensitive DMMP sensor applications . J. Mater. Chem. A 5 : 17335 – 17340 . https://doi.org/10.1039/C7TA02725G .
- Nimkar , S.H. , Agrawal , S.P. , and Kondawar , S.B. ( 2015 ). Fabrication of electrospun nanofibers of titanium dioxide intercalated polyaniline nanocomposites for CO 2 gas sensor . Procedia Mater. Sci. 10 : 572 – 579 . https://doi.org/10.1016/j.mspro.2015.06.008 .
- Ebbesen , T.W. and Ajayan , P.M. ( 1992 ). Large-scale synthesis of carbon nanotubes . Nature 358 : 220 – 222 . https://doi.org/10.1038/358220a0 .
- Oberlin , A. , Endo , M. , and Koyama , T. ( 1976 ). Filamentous growth of carbon through benzene decomposition . J. Cryst. Growth 32 : 335 – 349 . https://doi.org/10.1016/0022-0248(76)90115-9 .
- Iijima , S. ( 1991 ). Helical microtubules of graphitic carbon . Nature 354 : 56 – 58 . https://doi.org/10.1038/354056a0 .
-
Basheer , B.V.
,
George , J.J.
,
Siengchin , S.
, and
Parameswaranpillai , J.
(
2020
).
Polymer grafted carbon nanotubes—synthesis, properties, and applications: a review
.
Nano-Struct. Nano-Objects
22
:
100429
.
https://doi.org/10.1016/j.nanoso.2020.100429
.
10.1016/j.nanoso.2020.100429 Google Scholar
- Ma , P.-C. , Siddiqui , N.A. , Marom , G. , and Kim , J.-K. ( 2010 ). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review . Compos. Part A Appl. Sci. Manuf. 41 : 1345 – 1367 . https://doi.org/10.1016/j.compositesa.2010.07.003 .
- Banerjee , J. and Dutta , K. ( 2019 ). Melt-mixed carbon nanotubes/polymer nanocomposites . Polym. Compos. 40 : 4473 – 4488 . https://doi.org/10.1002/pc.25334 .
- Spitalsky , Z. , Tasis , D. , Papagelis , K. , and Galiotis , C. ( 2010 ). Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties . Prog. Polym. Sci. 35 : 357 – 401 . https://doi.org/10.1016/j.progpolymsci.2009.09.003 .
- Ajayan , P.M. , Stephan , O. , Colliex , C. , and Trauth , D. Aligned carbon nanotube arrays formed by cutting a polymer resin–nanotube composite . Science (80-.) 265 ( 1994 ): 1212 – 1214 . https://doi.org/10.1126/science.265.5176.1212 .
- Chen , J. , Liu , B. , Gao , X. , and Xu , D. ( 2018 ). A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes . RSC Adv. 8 : 28048 – 28085 . https://doi.org/10.1039/c8ra04205e .
- Salavagione , H.J. , Díez-Pascual , A.M. , Lázaro , E. et al. ( 2014 ). Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer . J. Mater. Chem. A 2 : 14289 – 14328 . https://doi.org/10.1039/c4ta02159b .
- Norizan , M.N. , Moklis , M.H. , Ngah Demon , S.Z. et al. ( 2020 ). Carbon nanotubes: functionalisation and their application in chemical sensors . RSC Adv. 10 : 43704 – 43732 . https://doi.org/10.1039/D0RA09438B .
- Kong , J. , Franklin , N.R. , Zhou , C. et al. Nanotube molecular wires as chemical sensors . Science (80-.) 287 ( 2000 ): 622 – 625 . https://doi.org/10.1126/science.287.5453.622 .
- Han , T. , Nag , A. , Chandra Mukhopadhyay , S. , and Xu , Y. ( 2019 ). Carbon nanotubes and its gas-sensing applications: a review . Sens. Actuators, A 291 : 107 – 143 . https://doi.org/10.1016/j.sna.2019.03.053 .
- Kumar , D. , Kumar , I. , Chaturvedi , P. et al. ( 2016 ). Study of simultaneous reversible and irreversible adsorption on single-walled carbon nanotube gas sensor . Mater. Chem. Phys. 177 : 276 – 282 . https://doi.org/10.1016/j.matchemphys.2016.04.028 .
-
Dag , S.
,
Ozturk , Y.
,
Ciraci , S.
, and
Yildirim , T.
(
2005
).
Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes
.
Phys. Rev. B – Condens. Matter Mater. Phys.
72
:
1
–
8
.
https://doi.org/10.1103/PhysRevB.72.155404
.
10.1103/PhysRevB.72.155404 Google Scholar
- Schedin , F. , Geim , A.K. , Morozov , S.V. et al. ( 2007 ). Detection of individual gas molecules adsorbed on graphene . Nat. Mater. 6 : 652 – 655 . https://doi.org/10.1038/nmat1967 .
- Dan , Y. , Lu , Y. , Kybert , N.J. et al. ( 2009 ). Intrinsic response of graphene vapor sensors . Nano Lett. 9 : 1472 – 1475 . https://doi.org/10.1021/nl8033637 .
- Kwon , Y.J. , Mirzaei , A. , Kang , S.Y. et al. ( 2017 ). Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs . Appl. Surf. Sci. 413 : 242 – 252 . https://doi.org/10.1016/j.apsusc.2017.03.290 .
- Van Hieu , N. , Thuy , L.T.B. , and Chien , N.D. ( 2008 ). Highly sensitive thin film NH 3 gas sensor operating at room temperature based on SnO 2 /MWCNTs composite . Sens. Actuators, B 129 : 888 – 895 . https://doi.org/10.1016/j.snb.2007.09.088 .
- Zanolli , Z. , Leghrib , R. , Felten , A. et al. ( 2011 ). Gas sensing with Au-decorated carbon nanotubes . ACS Nano. 5 : 4592 – 4599 . https://doi.org/10.1021/nn200294h .
- Chen , N. , Li , X. , Wang , X. et al. ( 2013 ). Enhanced room temperature sensing of Co 3 O 4 -intercalated reduced graphene oxide based gas sensors . Sens. Actuators, B 188 : 902 – 908 . https://doi.org/10.1016/j.snb.2013.08.004 .
- Van Hieu , N. , Dung , N.Q. , Tam , P.D. et al. ( 2009 ). Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature . Sens. Actuators, B 140 : 500 – 507 . https://doi.org/10.1016/j.snb.2009.04.061 .
- Du , H.Y. , Wang , J. , Yao , P.J. et al. ( 2013 ). Preparation of modified MWCNTs-doped PANI nanorods by oxygen plasma and their ammonia-sensing properties . J. Mater. Sci. 48 : 3597 – 3604 . https://doi.org/10.1007/s10853-013-7157-4 .
- Kar , P. and Choudhury , A. ( 2013 ). Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors . Sens. Actuators, B 183 : 25 – 33 . https://doi.org/10.1016/j.snb.2013.03.093 .
- Abdulla , S. , Mathew , T.L. , and Pullithadathil , B. ( 2015 ). Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection . Sens. Actuators, B 221 : 1523 – 1534 . https://doi.org/10.1016/j.snb.2015.08.002 .
- Xue , L. , Wang , W. , Guo , Y. et al. ( 2017 ). Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors . Sens. Actuators, B 244 : 47 – 53 . https://doi.org/10.1016/j.snb.2016.12.064 .
- Eising , M. , Cava , C.E. , Salvatierra , R.V. et al. ( 2017 ). Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor . Sens. Actuators, B 245 : 25 – 33 . https://doi.org/10.1016/j.snb.2017.01.132 .
- Zhang , W. , Cao , S. , Wu , Z. et al. ( 2019 ). High-performance gas sensor of polyaniline/carbon nanotube composites promoted by Interface Engineering . Sensors 20 .
- Bachhav , S.G. and Patil , D.R. ( 2015 ). Study of polypyrrole-coated MWCNT nanocomposites for ammonia sensing at room temperature . J. Mater. Sci. Chem. Eng. 03 : 30 – 44 . https://doi.org/10.4236/msce.2015.310005 .
- Hamouma , O. , Kaur , N. , Oukil , D. et al. ( 2019 ). Paper strips coated with polypyrrole-wrapped carbon nanotube composites for chemi-resistive gas sensing . Synth. Met. 258 : 116223 . https://doi.org/10.1016/j.synthmet.2019.116223 .
- An , K.H. , Jeong , S.Y. , Hwang , H.R. , and Lee , Y.H. ( 2004 ). Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites . Adv. Mater. 16 : 1005 – 1009 . https://doi.org/10.1002/adma.200306176 .
- Zhang , Y. , Bunes , B.R. , Wu , N. et al. ( 2018 ). Sensing methamphetamine with chemiresistive sensors based on polythiophene-blended single-walled carbon nanotubes . Sens. Actuators, B 255 : 1814 – 1818 . https://doi.org/10.1016/j.snb.2017.08.201 .
- Husain , A. , Ahmad , S. , Shariq , M.U. , and Khan , M.M.A. ( 2020 ). Ultra-sensitive, highly selective and completely reversible ammonia sensor based on polythiophene/SWCNT nanocomposite . Materialia 10 : 100704 . https://doi.org/10.1016/j.mtla.2020.100704 .
-
Husain , A.
,
Ahmad , S.
, and
Mohammad , F.
(
2020
).
Electrical conductivity and ammonia sensing studies on polythiophene/MWCNTs nanocomposites
.
Materialia
14
:
https://doi.org/10.1016/j.mtla.2020.100868
.
10.1016/j.mtla.2020.100868 Google Scholar
- Philip , B. , Abraham , J.K. , Chandrasekhar , A. , and Varadan , V.K. ( 2003 ). Carbon nanotube/PMMA composite thin films for gas-sensing applications . Smart Mater. Struct. 12 : 935 – 939 . https://doi.org/10.1088/0964-1726/12/6/010 .
- Park , S.J. , Kwon , O.S. , and Jang , J. ( 2013 ). A high-performance hydrogen gas sensor using ultrathin polypyrrole-coated CNT nanohybrids . Chem. Commun. 49 : 4673 . https://doi.org/10.1039/c3cc41020j .