2D Materials with 1D Semiconducting Nanostructures for High-Performance Gas Sensor
Shulin Yang
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
2 Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, 368 Youyi Road, Wuhan, Hubei Province,, 430062 China
Search for more papers by this authorYinghong Liu
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
Search for more papers by this authorGui Lei
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
2 Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, 368 Youyi Road, Wuhan, Hubei Province,, 430062 China
Search for more papers by this authorHuoxi Xu
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
Search for more papers by this authorZhigao Lan
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
Search for more papers by this authorZhao Wang
2 Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, 368 Youyi Road, Wuhan, Hubei Province,, 430062 China
Search for more papers by this authorHaoshuang Gu
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
2 Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, 368 Youyi Road, Wuhan, Hubei Province,, 430062 China
Search for more papers by this authorShulin Yang
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
2 Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, 368 Youyi Road, Wuhan, Hubei Province,, 430062 China
Search for more papers by this authorYinghong Liu
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
Search for more papers by this authorGui Lei
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
2 Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, 368 Youyi Road, Wuhan, Hubei Province,, 430062 China
Search for more papers by this authorHuoxi Xu
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
Search for more papers by this authorZhigao Lan
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
Search for more papers by this authorZhao Wang
2 Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, 368 Youyi Road, Wuhan, Hubei Province,, 430062 China
Search for more papers by this authorHaoshuang Gu
1 Huanggang Normal University, Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, 146 Xingang 2nd Road, Huanggang, Hubei Province, China
2 Hubei University, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, 368 Youyi Road, Wuhan, Hubei Province,, 430062 China
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
2D materials with 1D semiconducting nanostructures have been widely investigated and assembled to be gas sensors with promising sensing properties. A number of strategies to assemble the 1D materials-based nanostructures were systematically studied and compared, including hydrothermal process, thermal oxides, and electrospinning. The gas-sensing performances of the 2D materials with 1D semiconducting nanostructures were also reviewed and summarized through investigating their sensing responses, response times, and recovery times. The sensor based on 1D semiconducting nanostructures composited with 2D graphene/reduced graphene oxide, MoS 2 , WS 2 , or ZnO were systematically explored by comparing their sensing properties to small gas molecules or volatile organic compounds. The sensing mechanisms of 2D materials with 1D semiconducting nanostructures were discussed as well. And the improvements in their sensing properties were mainly attributed to the built heterojunctions in the hybrid composites and their high specific surface areas. This review indicated that the 1D semiconducting nanostructures hybridized with 2D materials could also be potential sensing materials to exhibit outstanding gas-sensing performances.
References
- Ma , X. , Jia , H. , Sha , T. et al. ( 2019 ). Spatial and seasonal characteristics of particulate matter and gaseous pollution in China: implications for control policy . Environ. Pollut. 248 : 421 – 428 .
- Wen , M. , Li , G. , Liu , H. et al. ( 2019 ). Metal–organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges . Environ. Sci.: Nano 6 : 1006 – 1025 .
- Guan , W. , Tang , N. , He , K. et al. ( 2020 ). Gas-sensing performances of metal oxide nanostructures for detecting dissolved gases: a mini review . Front. Chem. 8 : 76 .
- Cho , S.H. , Suh , J.M. , Eom , T.H. et al. ( 2021 ). Colorimetric sensors for toxic and hazardous gas detection: a review . Electron. Mater. Lett. 17 : 1 – 17 .
- Buckley , D.J. , Black , N.C. , Castanon , E.G. et al. ( 2020 ). Frontiers of graphene and 2D material-based gas sensors for environmental monitoring . 2D Mater. 7 : 032002 .
- Umar , A. , Ibrahim , A.A. , Nakate , U.T. et al. ( 2021 ). Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application . Chem. Phys. Lett. 763 : 138204 .
- Vanotti , M. , Poisson , S. , Soumann , V. et al. ( 2021 ). Influence of interfering gases on a carbon monoxide differential sensor based on SAW devices functionalized with cobalt and copper corroles . Sens. Actuators, B 332 : 129507 .
- Yang , S. , Lei , G. , Xu , H. et al. ( 2019 ). A DFT study of CO adsorption on the pristine, defective, In-doped and Sb-doped graphene and the effect of applied electric field . Appl. Surf. Sci. 480 : 205 – 211 .
- Zou , M. , Aono , Y. , Inoue , S. , and Matsumura , Y. ( 2020 ). Response of palladium and carbon nanotube composite films to hydrogen gas and behavior of conductive carriers . Materials 13 : 4568 .
- Dong , M. , Zheng , C. , Miao , S. et al. ( 2017 ). Development and measurements of a mid-infrared multi-gas sensor system for CO, CO 2 and CH 4 detection . Sensor 17 : 2221 .
- Tang , H. , Sacco , L.N. , Vollebregt , S. et al. ( 2020 ). Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives . J. Mater. Chem. 8 : 24943 – 24976 .
- Zhao , C. , Gong , H. , Niu , G. , and Wang , F. ( 2020 ). Ultrasensitive SO 2 sensor for sub-ppm detection using Cu-doped SnO 2 nanosheet arrays directly grown on chip . Sens. Actuators, B 324 : 128745 .
- Li , K. , Luo , Y. , Liu , B. et al. ( 2019 ). High-performance NO 2 -gas sensing of ultrasmall ZnFe 2 O 4 nanoparticles based on surface charge transfer . J. Mater. Chem. 7 : 5539 – 5551 .
- Lou , C. , Yang , C. , Zheng , W. et al. ( 2021 ). Atomic layer deposition of ZnO on SnO 2 nanospheres for enhanced formaldehyde detection . Sens. Actuators, B 329 : 129218 .
- Arafat , M. , Dinan , B. , Akbar , S.A. , and Haseeb , A. ( 2012 ). Gas sensors based on one dimensional nanostructured metal-oxides: a review . Sensor 12 : 7207 – 7258 .
- Fu , X. , Yang , P. , Xiao , X. et al. ( 2019 ). Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO 3 nanobelts . J. Alloys Compd. 797 : 666 – 675 .
- Kumar , R. , Al-Dossary , O. , Kumar , G. , and Umar , A. ( 2015 ). Zinc oxide nanostructures for NO 2 gas–sensor applications: a review . Nano-Micro Lett. 7 : 97 – 120 .
- Park , K.-R. , Cho , H.-B. , Lee , J. et al. ( 2020 ). Design of highly porous SnO 2 -CuO nanotubes for enhancing H2S gas sensor performance . Sens. Actuators, B 302 : 127179 .
- Seiyama , T. , Kato , A. , Fujiishi , K. , and Nagatani , M. ( 1962 ). A new detector for gaseous components using semiconductive thin films . Anal. Chem. 34 : 1502 – 1503 .
- Miller , D.R. , Akbar , S.A. , and Morris , P.A. ( 2014 ). Nanoscale metal oxide-based heterojunctions for gas sensing: a review . Sens. Actuators, B 204 : 250 – 272 .
-
Govardhan , K.
and
Grace , A.N.
(
2016
).
Metal/metal oxide doped semiconductor based metal oxide gas sensors-a review
.
Sens. Lett.
14
:
741
–
750
.
10.1166/sl.2016.3710 Google Scholar
- Wang , Z. , Hu , Y. , Wang , W. et al. ( 2012 ). Fast and highly-sensitive hydrogen sensing of Nb 2 O 5 nanowires at room temperature . Int. J. Hydrogen Energy 37 : 4526 – 4532 .
- Song , Y.G. , Park , J.Y. , Suh , J.M. et al. ( 2018 ). Heterojunction based on Rh-decorated WO 3 nanorods for morphological change and gas sensor application using the transition effect . Chem. Mater. 31 : 207 – 215 .
- Tao , K. , Han , X. , Yin , Q. et al. ( 2017 ). Metal-organic frameworks-derived porous In 2 O 3 hollow nanorod for high-performance ethanol gas sensor . ChemistrySelect 2 : 10918 – 10925 .
- Wang , C. , Cui , X. , Liu , J. et al. ( 2016 ). Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers . ACS Sens. 1 : 131 – 136 .
- Wang , X. , Wang , T. , Si , G. et al. ( 2020 ). Oxygen vacancy defects engineering on Ce-doped α-Fe 2 O 3 gas sensor for reducing gases . Sens. Actuators, B 302 : 127165 .
- Tonezzer , M. ( 2019 ). Selective gas sensor based on one single SnO 2 nanowire . Sens. Actuators, B 288 : 53 – 59 .
- Liu , W. , Xu , L. , Sheng , K. et al. ( 2018 ). A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@ In 2 O 3 nanowires and a molecular sieve for protection . NPG Asia Mater. 10 : 293 – 308 .
- Li , Z. ( 2017 ). Supersensitive and superselective formaldehyde gas sensor based on NiO nanowires . Vacuum 143 : 50 – 53 .
- Naama , S. , Hadjersi , T. , Keffous , A. , and Nezzal , G. ( 2015 ). CO 2 gas sensor based on silicon nanowires modified with metal nanoparticles . Mater. Sci. Semicond. Process. 38 : 367 – 372 .
- Yang , S. , Lei , G. , Xu , H. et al. ( 2021 ). Metal oxide based heterojunctions for gas sensors: a review . Nanomaterials 11 : 1026 .
- Ge , L. , Mu , X. , Tian , G. et al. ( 2019 ). Current applications of gas sensor based on 2-D nanomaterial: a mini review . Front. Chem. 7 : 839 .
- Kumar , R. , Liu , X. , Zhang , J. , and Kumar , M. ( 2020 ). Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials . Nano-Micro Lett. 12 : 1 – 37 .
- Choi , S.-J. and Kim , I.-D. ( 2018 ). Recent developments in 2D nanomaterials for chemiresistive-type gas sensors . Electron. Mater. Lett. 14 : 221 – 260 .
- Wang , C.N. , Li , Y.L. , Gong , F.L. et al. ( 2020 ). Advances in doped ZnO nanostructures for gas sensor . Chem. Rec. 20 : 1553 – 1567 .
- Moon , D.-B. , Bag , A. , Lee , H.-B. et al. ( 2021 ). A stretchable, room-temperature operable, chemiresistive gas sensor using nanohybrids of reduced graphene oxide and zinc oxide nanorods . Sens. Actuators, B 345 : 130373 .
- Zhao , Y. , Li , H. , Li , Y. et al. ( 2021 ). Layered SnO 2 nanorods arrays anchored on reduced graphene oxide for ultra-high and ppb level formaldehyde sensing . Sens. Actuators, B 346 : 130452 .
- Xu , K. , Yang , L. , Yang , Y. , and Yuan , C. ( 2017 ). Improved ethanol gas sensing performances of a ZnO/Co 3 O 4 composite induced by its flytrap-like structure . Phys. Chem. Chem. Phys. 19 : 29601 – 29607 .
- Novoselov , K.S. , Geim , A.K. , Morozov , S.V. et al. ( 2004 ). Electric field effect in atomically thin carbon films . Science 306 : 666 – 669 .
- Chatterjee , S.G. , Chatterjee , S. , Ray , A.K. , and Chakraborty , A.K. ( 2015 ). Graphene–metal oxide nanohybrids for toxic gas sensor: a review . Sens. Actuators, B 221 : 1170 – 1181 .
- Toda , K. , Furue , R. , and Hayami , S. ( 2015 ). Recent progress in applications of graphene oxide for gas sensing: a review . Anal. Chim. Acta 878 : 43 – 53 .
- Majhi , S.M. , Mirzaei , A. , Kim , H.W. , and Kim , S.S. ( 2021 ). Reduced graphene oxide (rGO)-loaded metal-oxide nanofiber gas sensors: an overview . Sensor 21 : 1352 .
- Rafiee , Z. , Roshan , H. , and Sheikhi , M.H. ( 2021 ). Low concentration ethanol sensor based on graphene/ZnO nanowires . Ceram. Int. 47 : 5311 – 5317 .
- Minh Triet , N. , Thai Duy , L. , Hwang , B.-U. et al. ( 2017 ). High-performance Schottky diode gas sensor based on the heterojunction of three-dimensional nanohybrids of reduced graphene oxide–vertical ZnO nanorods on an AlGaN/GaN layer . ACS Appl. Mater. Interfaces 9 : 30722 – 30732 .
- Yang , S. , Wang , Z. , Zou , Y. et al. ( 2017 ). Remarkably accelerated room-temperature hydrogen sensing of MoO 3 nanoribbon/graphene composites by suppressing the nanojunction effects . Sens. Actuators, B 248 : 160 – 168 .
- Abideen , Z.U. , Kim , H.W. , and Kim , S.S. ( 2015 ). An ultra-sensitive hydrogen gas sensor using reduced graphene oxide-loaded ZnO nanofibers . Chem. Commun. 51 : 15418 – 15421 .
- Yan , C. , Lu , H. , Gao , J. et al. ( 2018 ). Improved NO 2 sensing properties at low temperature using reduced graphene oxide nanosheet-In 2 O 3 heterojunction nanofibers . J. Alloys Compd. 741 : 908 – 917 .
- Galstyan , V. , Ponzoni , A. , Kholmanov , I. et al. ( 2018 ). Reduced graphene oxide-TiO 2 nanotube composite: comprehensive study for gas-sensing applications . ACS Appl. Nano Mater. 1 : 7098 – 7105 .
- Sun , Z. , Huang , D. , Yang , Z. et al. ( 2015 ). ZnO nanowire-reduced graphene oxide hybrid based portable NH 3 gas sensing electron device . IEEE Electron Device Lett. 36 : 1376 – 1379 .
- Meng , H. , Yang , W. , Ding , K. et al. ( 2015 ). Cu 2 O nanorods modified by reduced graphene oxide for NH 3 sensing at room temperature . J. Mater. Chem. A 3 : 1174 – 1181 .
- Chu , X. , Hu , T. , Gao , F. et al. ( 2015 ). Gas sensing properties of graphene–WO 3 composites prepared by hydrothermal method . Mater. Sci. Eng., B 193 : 97 – 104 .
- Bai , S. , Chen , C. , Luo , R. et al. ( 2015 ). Synthesis of MoO 3 /reduced graphene oxide hybrids and mechanism of enhancing H 2 S sensing performances . Sens. Actuators, B 216 : 113 – 120 .
- Xia , Y. , Wang , J. , Xu , J.-L. et al. ( 2016 ). Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO 2 sensors . ACS Appl. Mater. Interfaces 8 : 35454 – 35463 .
- Wang , T. , Sun , Z. , Huang , D. et al. ( 2017 ). Studies on NH 3 gas sensing by zinc oxide nanowire-reduced graphene oxide nanocomposites . Sens. Actuators, B 252 : 284 – 294 .
- Fang , W. , Yang , Y. , Yu , H. et al. ( 2017 ). An In 2 O 3 nanorod-decorated reduced graphene oxide composite as a high-response NOx gas sensor at room temperature . New J. Chem. 41 : 7517 – 7523 .
- Reddeppa , M. , Park , B.-G. , Kim , M.-D. et al. ( 2018 ). H 2 , H 2 S gas sensing properties of rGO/GaN nanorods at room temperature: effect of UV illumination . Sens. Actuators, B 264 : 353 – 362 .
- Amarnath , M. and Gurunathan , K. ( 2021 ). Selective ammonia sensing response of vanadium doped cerium oxide nanorods wrapped reduced graphene oxide electrodes at room temperature . Sens. Actuators, B 336 : 129679 .
- Kumar , R.R. , Murugesan , T. , Dash , A. et al. ( 2021 ). Ultrasensitive and light-activated NO 2 gas sensor based on networked MoS 2 /ZnO nanohybrid with adsorption/desorption kinetics study . Appl. Surf. Sci. 536 : 147933 .
- Viet , N.N. , Dang , T.K. , Phuoc , P.H. et al. ( 2021 ). MoS 2 nanosheets-decorated SnO 2 nanofibers for enhanced SO 2 gas sensing performance and classification of CO, NH 3 and H 2 gases . Anal. Chim. Acta 1167 : 338576 .
- Liu , A. , Lv , S. , Jiang , L. et al. ( 2021 ). The gas sensor utilizing polyaniline/MoS 2 nanosheets/SnO 2 nanotubes for the room temperature detection of ammonia . Sens. Actuators, B 332 : 129444 .
- Bai , X. , Lv , H. , Liu , Z. et al. ( 2021 ). Thin-layered MoS 2 nanoflakes vertically grown on SnO 2 nanotubes as highly effective room-temperature NO 2 gas sensor . J. Hazard. Mater. 416 : 125830 .
- Zhang , D. , Jiang , C. , Li , P. , and Sun , Y. e. ( 2017 ). Layer-by-layer self-assembly of Co 3 O 4 nanorod-decorated MoS 2 nanosheet-based nanocomposite toward high-performance ammonia detection . ACS Appl. Mater. Interfaces 9 : 6462 – 6471 .
- Zhao , S. , Wang , G. , Liao , J. et al. ( 2018 ). Vertically aligned MoS 2 /ZnO nanowires nanostructures with highly enhanced NO 2 sensing activities . Appl. Surf. Sci. 456 : 808 – 816 .
- Zhao , P. , Tang , Y. , Mao , J. et al. ( 2016 ). One-dimensional MoS 2 -decorated TiO 2 nanotube gas sensors for efficient alcohol sensing . J. Alloys Compd. 674 : 252 – 258 .
- Zhao , S. , Li , Z. , Wang , G. et al. ( 2018 ). Highly enhanced response of MoS 2 /porous silicon nanowire heterojunctions to NO 2 at room temperature . RSC Adv. 8 : 11070 – 11077 .
- Dwiputra , M.A. , Fadhila , F. , Imawan , C. , and Fauzia , V. ( 2020 ). The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS 2 nanosheets heterostructure . Sens. Actuators, B 310 : 127810 .
- Suh , J.M. , Kwon , K.C. , Lee , T.H. et al. ( 2021 ). Edge-exposed WS 2 on 1D nanostructures for highly selective NO 2 sensor at room temperature . Sens. Actuators, B 333 : 129566 .
- Wang , B. , Zheng , Z.Q. , Zhu , L.F. et al. ( 2014 ). Self-assembled and Pd decorated Zn 2 SnO 4 /ZnO wire-sheet shape nano-heterostructures networks hydrogen gas sensors . Sens. Actuators, B 195 : 549 – 561 .
- Liu , F. , Chen , X. , Wang , X. et al. ( 2019 ). Fabrication of 1D Zn 2 SnO 4 nanowire and 2D ZnO nanosheet hybrid hierarchical structures for use in triethylamine gas sensors . Sens. Actuators, B 291 : 155 – 163 .
- Wang , X. and Cho , H.J. ( 2018 ). p-CuO nanowire/n-ZnO nanosheet heterojunction-based near-UV sensor fabricated by electroplating and thermal oxidation process . Mater. Lett. 223 : 170 – 173 .
- Lu , Y. , Ma , Y. , Ma , S. , and Yan , S. ( 2017 ). Hierarchical heterostructure of porous NiO nanosheets on flower-like ZnO assembled by hexagonal nanorods for high-performance gas sensor . Ceram. Int. 43 : 7508 – 7515 .
- Hoa , L.T. , Tien , H.N. , and Hur , S.H. ( 2014 ). Fabrication of novel 2D NiO nanosheet branched on 1D-ZnO nanorod arrays for gas sensor application . J. Nanomater. 2014 .
- Nakate , U.T. , Yu , Y. , and Park , S. ( 2021 ). High performance acetaldehyde gas sensor based on pn heterojunction interface of NiO nanosheets and WO 3 nanorods . Sens. Actuators, B 130264 .
- Wang , Z. , Zhi , M. , Xu , M. et al. ( 2021 ). Ultrasensitive NO 2 gas sensor based on Sb-doped SnO 2 covered ZnO nano-heterojunction . J. Mater. Sci. 56 : 7348 – 7356 .
- Wang , B. , Wang , Y. , Lei , Y. et al. ( 2016 ). Vertical SnO 2 nanosheet@ SiC nanofibers with hierarchical architecture for high-performance gas sensors . J. Mater. Chem. C 4 : 295 – 304 .
- Sun , L. , Wang , B. , and Wang , Y. ( 2020 ). High-temperature gas sensor based on novel Pt single atoms@ SnO 2 nanorods@ SiC nanosheets multi-heterojunctions . ACS Appl. Mater. Interfaces 12 : 21808 – 21817 .
- Xu , K. , Wei , W. , Sun , Y. et al. ( 2019 ). Design of NiCO 2 O 4 porous nanosheets/α-MoO 3 nanorods heterostructures for ppb-level ethanol detection . Powder Technol. 345 : 633 – 642 .
-
Xu , K.
,
Zhao , W.
,
Yu , X.
et al. (
2020
).
Enhanced ethanol sensing performance using Co
3
O
4
-ZnSnO
3
arrays prepared on alumina substrates
.
Phys. E
117
:
113825
.
10.1016/j.physe.2019.113825 Google Scholar
- Xu , K. , Tang , Q. , Zhao , W. et al. ( 2020 ). In situ growth of Co 3 O 4 @ NiMoO 4 composite arrays on alumina substrate with improved triethylamine sensing performance . Sens. Actuators, B 302 : 127154 .
- Wang , Y. , Zhou , Y. , Ren , H. et al. ( 2020 ). Room-temperature and humidity-resistant trace nitrogen dioxide sensing of few-layer black phosphorus nanosheet by incorporating zinc oxide nanowire . Anal. Chem. 92 : 11007 – 11017 .
- Wang , Y. , Cao , J. , Qin , C. et al. ( 2017 ). Synthesis and enhanced ethanol gas sensing properties of the g-C 3 N 4 nanosheets-decorated tin oxide flower-like nanorods composite . Nanomaterials 7 : 285 .
- Kim , J.-H. , Mirzaei , A. , Zheng , Y. et al. ( 2019 ). Enhancement of H 2 S sensing performance of p-CuO nanofibers by loading p-reduced graphene oxide nanosheets . Sens. Actuators, B 281 : 453 – 461 .
- Abideen , Z.U. , Katoch , A. , Kim , J.-H. et al. ( 2015 ). Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets . Sens. Actuators, B 221 : 1499 – 1507 .
- Chaudhary , V. and Nehra , S.P. ( 2021 ). Pt-sensitized MoO 3 /mpg-CN mesoporous nanohybrid: a highly sensitive VOC sensor . Microporous Mesoporous Mater. 315 : 110906 .
- Wang , L. , Fu , H. , Jin , Q. et al. ( 2019 ). Directly transforming SnS 2 nanosheets to hierarchical SnO 2 nanotubes: towards sensitive and selective sensing of acetone at relatively low operating temperatures . Sens. Actuators, B 292 : 148 – 155 .
- Li , X. , Zhou , Y. , Tai , H. et al. ( 2020 ). Nanocomposite films of p-type MoS 2 nanosheets/n-type ZnO nanowires: sensitive and low-temperature ppb-level NO 2 detection . Mater. Lett. 262 : 127148 .
- Hsu , L.C. , Ativanichayaphong , T. , Cao , H. et al. ( 2007 ). Evaluation of commercial metal-oxide based NO 2 sensors . Sens. Rev.
- Kwak , C.-H. , Kim , T.-H. , Jeong , S.-Y. et al. ( 2018 ). Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO 2 yolk–shell spheres for real-time breath analysis . ACS Appl. Mater. Interfaces 10 : 18886 – 18894 .
- Qu , F. , Zhang , S. , Huang , C. et al. ( 2021 ). Surface functionalized sensors for humidity-independent gas detection . Angew. Chem., Int. Ed. 60 : 6561 – 6566 .
- Kondalkar , V.V. , Duy , L.T. , Seo , H. , and Lee , K. ( 2019 ). Nanohybrids of Pt-functionalized Al 2 O 3 /ZnO core–shell nanorods for high-performance MEMS-based acetylene gas sensor . ACS Appl. Mater. Interfaces 11 : 25891 – 25900 .
- Sajjad , M. and Feng , P. ( 2014 ). Study the gas sensing properties of boron nitride nanosheets . Mater. Res. Bull. 49 : 35 – 38 .
- Ma , J. , Fan , H. , Zhang , W. et al. ( 2020 ). High sensitivity and ultra-low detection limit of chlorine gas sensor based on In 2 O 3 nanosheets by a simple template method . Sens. Actuators, B 305 : 127456 .
- Raghu , A.V. , Karuppanan , K.K. , Nampoothiri , J. , and Pullithadathil , B. ( 2019 ). Wearable, flexible ethanol gas sensor based on TiO 2 nanoparticles-grafted 2D-titanium carbide nanosheets . ACS Appl. Nano Mater. 2 : 1152 – 1163 .
- Deng , S. , Liu , X. , Chen , N. et al. ( 2016 ). A highly sensitive VOC gas sensor using p-type mesoporous Co 3 O 4 nanosheets prepared by a facile chemical coprecipitation method . Sens. Actuators, B 233 : 615 – 623 .
- Zhang , L. , Li , Z. , Liu , J. et al. ( 2020 ). Optoelectronic gas sensor based on few-layered InSe nanosheets for NO 2 detection with ultrahigh antihumidity ability . Anal. Chem. 92 : 11277 – 11287 .
- Patel , L. , Shukla , T. , Huang , X. et al. ( 2020 ). Machine learning methods in drug discovery . Molecules 25 : 5277 .
- Karthik , S. and Sudha , M. ( 2018 ). A survey on machine learning approaches in gene expression classification in modelling computational diagnostic system for complex diseases . Int. J. Eng. Technol. 8 : 182 – 191 .
- Zhang , Y. , Wong , Y.S. , Deng , J. et al. ( 2016 ). Machine learning algorithms for mode-of-action classification in toxicity assessment . BioData Min. 9 : 1 – 21 .
- Acharyya , S. , Jana , B. , Nag , S. et al. ( 2020 ). Single resistive sensor for selective detection of multiple VOCs employing SnO 2 hollowspheres and machine learning algorithm: a proof of concept . Sens. Actuators, B 321 : 128484 .
- Jaeschke , C. , Glöckler , J. , El Azizi , O. et al. ( 2019 ). An innovative modular eNose system based on a unique combination of analog and digital metal oxide sensors . ACS Sens. 4 : 2277 – 2281 .
- Peng , G. , Tisch , U. , Adams , O. et al. ( 2009 ). Diagnosing lung cancer in exhaled breath using gold nanoparticles . Nat. Nanotechnol. 4 : 669 – 673 .
- Liao , Y.-H. , Shih , C.-H. , Abbod , M.F. et al. ( 2020 ). Development of an E-nose system using machine learning methods to predict ventilator-associated pneumonia . Microsyst. Technol. 1-11 .
-
Salhi , L.
,
Silverston , T.
,
Yamazaki , T.
, and
Miyoshi , T.
(
2019
).
Early detection system for gas leakage and fire in smart home using machine learning
. In:
2019 IEEE International Conference on Consumer Electronics (ICCE)
,
1
–
6
.
IEEE
.
10.1109/ICCE.2019.8661990 Google Scholar
- Yaqoob , U. and Younis , M.I. ( 2021 ). Chemical gas sensors: recent developments, challenges, and the potential of machine learning-a review . Sensor 21 : 2877 .
-
Lekha , S.
and
Suchetha , M.
(
2020
).
Recent advancements and future prospects on E-Nose sensors technology and machine learning approaches for non-invasive diabetes diagnosis: a review
.
IEEE Rev. Biomed. Eng.
14
:
127
–
138
.
10.1109/RBME.2020.2993591 Google Scholar