Optoelectronic Properties of TiO 2 Nanorods/ Au Nanoparticles Heterostructure
Dhyey Raval
1 Pandit Deendayal Energy University, School of Technology, Department of Solar Energy, Raisan, Gandhinagar, 382426 India
Search for more papers by this authorAbhijit Ray
1 Pandit Deendayal Energy University, School of Technology, Department of Solar Energy, Raisan, Gandhinagar, 382426 India
Search for more papers by this authorBrijesh Tripathi
2 Pandit Deendayal Energy University, School of Technology, Department of Physics, Gandhinagar, 382426 India
Search for more papers by this authorDhyey Raval
1 Pandit Deendayal Energy University, School of Technology, Department of Solar Energy, Raisan, Gandhinagar, 382426 India
Search for more papers by this authorAbhijit Ray
1 Pandit Deendayal Energy University, School of Technology, Department of Solar Energy, Raisan, Gandhinagar, 382426 India
Search for more papers by this authorBrijesh Tripathi
2 Pandit Deendayal Energy University, School of Technology, Department of Physics, Gandhinagar, 382426 India
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
This chapter reports the optoelectronic properties of hydrothermally synthesized titanium dioxide nanorod (TiO 2 NR) with attached gold nanoparticles (AuNP) as a heterostructure on the transparent substrates. The heterostructures of TiO 2 NR are studied by changing the temperature and concentration of precursor during the experimental process. The nanostructures having nanorod morphology of TiO 2 and gold (Au) nanoparticles were characterized to study the optoelectronic properties of the samples. The electronic and optical properties of TiO 2 NR layer depend on the variables such as diameter of nanorod, separation among the nanorods, and porosity of the layer, which can be understood through the theoretical studies and experimental observations. The physical properties of such nanostructures have been theoretically and experimentally explored for the optoelectronic applications. Amperometric behavior during experimental photocurrent measurement due to the electron transfer from the attached AuNP (size in the range of 3–44 nm) to TiO 2 NR (diameter ~ 80 ± 5 nm) has been elucidated with theoretical electron density. Improved optoelectronic properties are observed in TiO 2 NR/AuNP heterostructure, which are found to be beneficial for device applications.
References
- Liu , G. , Wang , L. , Yang , H.G. et al. ( 2010 ). Titania-based photocatalysts-crystal growth, doping and heterostructuring . J. Mater. Chem. 20 ( 5 ): 831 – 843 .
- Chen , X. and Mao , S.S. ( 2007 ). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications . Chem. Rev. 107 ( 7 ): 2891 – 2959 .
- Wang , H. , Bai , Y. , Zhang , H. et al. ( 2010 ). CdS quantum dots-sensitized TiO 2 nanorod array on transparent conductive glass photoelectrodes . J. Phys. Chem. C 114 ( 39 ): 16451 – 16455 .
- Lee , C.-H. , Liao , S.-C. , Lin , T.-R. et al. ( 2016 ). Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation . Opt. Express 24 ( 16 ): 17541 – 17552 .
- Tada , H. , Mitsui , T. , Kiyonaga , T. et al. ( 2006 ). All-solid-state Z-scheme in CdS-Au-TiO 2 three-component nanojunction system . Nat. Mater. 5 ( 10 ): 782 – 786 .
- Baker , D.R. and Kamat , P.V. ( 2009 ). Photosensitization of TiO 2 nanostructures with CdS quantum dots: particulate versus tubular support architectures . Adv. Funct. Mater. 19 ( 5 ): 805 – 811 .
- Zhang , H. , Wang , G. , Chen , D. et al. ( 2008 ). Tuning photoelectrochemical performances of Ag−TiO 2 nanocomposites via reduction/oxidation of ag . Chem. Mater. 20 ( 20 ): 6543 – 6549 .
- Kim , H.-S. , Lee , J.-W. , Yantara , N. et al. ( 2013 ). High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO 2 nanorod and CH3NH3PbI3 perovskite sensitizer . Nano Lett. 13 ( 6 ): 2412 – 2417 .
- Paramasivam , I. , Macak , J.M. , and Schmuki , P. ( 2008 ). Photocatalytic activity of TiO 2 nanotube layers loaded with Ag and Au nanoparticles . Electrochem. Commun. 10 ( 1 ): 71 – 75 .
- Lidia , A. , Davide , B. , Gregorio , B. et al. ( 2007 ). Photocatalytic and antibacterial activity of TiO 2 and Au/TiO 2 nanosystems . Nanotechnology 18 ( 37 ): 375709 .
- Awazu , K. , Fujimaki , M. , Rockstuhl , C. et al. ( 2008 ). A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide . J. Am. Chem. Soc. 130 ( 5 ): 1676 – 1680 .
- Ingram , D.B. and Linic , S. ( 2011 ). Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface . J. Am. Chem. Soc. 133 ( 14 ): 5202 – 5205 .
- Thimsen , E. , Le Formal , F. , Grätzel , M. , and Warren , S.C. ( 2011 ). Influence of plasmonic Au nanoparticles on the photoactivity of Fe 2 O 3 electrodes for water splitting . Nano Lett. 11 ( 1 ): 35 – 43 .
- Xu , Z. , Li , C. , Kang , X. et al. ( 2010 ). Synthesis of a multifunctional nanocomposite with magnetic, mesoporous, and near-IR absorption properties . J. Phys. Chem. C 114 ( 39 ): 16343 – 16350 .
- M. Zhang , Hu D.J.J. , P.P. Shum , et al. ( 2016 ). High-birefringent microstructured optical fiber based surface plasmon resonance sensor . Conference on Lasers and Electro-Optics , 2016/06/05, San Jose, California: Optical Society of America.
- Sun , X. , Dai , D. , Thylén , L. , and Wosinski , L. ( 2015 ). High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide . Opt. Express 23 ( 20 ): 25688 – 25699 .
- Feng , D. , Zhou , W. , Qiao , X. , and Albert , J. ( 2016 ). High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings . Opt. Express 24 ( 15 ): 16456 – 16464 .
- Erwin , W.R. , Zarick , H.F. , Talbert , E.M. , and Bardhan , R. ( 2016 ). Light trapping in mesoporous solar cells with plasmonic nanostructures . Energy Environ. Sci. 9 ( 5 ): 1577 – 1601 .
- Huang , H.J. , Zhen , S.-Y. , Li , P.-Y. et al. ( 2016 ). Confined migration of induced hot electrons in Ag/graphene/TiO 2 composite nanorods for plasmonic photocatalytic reaction . Opt. Express 24 ( 14 ): 15603 – 15608 .
- Rifat , A.A. , Mahdiraji , G.A. , Sua , Y.M. et al. ( 2016 ). Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor . Opt. Express 24 ( 3 ): 2485 – 2495 .
- Liu , Z. , Hou , W. , Pavaskar , P. et al. ( 2011 ). Plasmon resonant enhancement of photocatalytic water splitting under visible illumination . Nano Lett. 11 ( 3 ): 1111 – 1116 .
- Feldstein , M.J. , Keating , C.D. , Liau , Y.-H. et al. ( 1997 ). Electronic relaxation dynamics in coupled metal nanoparticles . J. Am. Chem. Soc. 119 ( 28 ): 6638 – 6647 .
- El-Sayed , M.A. ( 2001 ). Some interesting properties of metals confined in time and nanometer space of different shapes . Acc. Chem. Res. 34 ( 4 ): 257 – 264 .
- Lin , S. , Li , M. , Dujardin , E. et al. ( 2005 ). One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks . Adv. Mater. 17 ( 21 ): 2553 – 2559 .
- Feng , X. , Ruan , F. , Hong , R. et al. ( 2011 ). Synthetically directed self-assembly and enhanced surface-enhanced Raman scattering property of twinned crystalline Ag/Ag homojunction nanoparticles . Langmuir 27 ( 6 ): 2204 – 2210 .
- Rycenga , M. , Cobley , C.M. , Zeng , J. et al. ( 2011 ). Controlling the synthesis and assembly of silver nanostructures for plasmonic applications . Chem. Rev. 111 ( 6 ): 3669 – 3712 .
- Mali , S.S. , Shim , C.S. , Park , H.K. et al. ( 2015 ). Ultrathin atomic layer deposited TiO 2 for surface passivation of hydrothermally grown 1D TiO 2 nanorod arrays for efficient solid-state perovskite solar cells . Chem. Mater. 27 ( 5 ): 1541 – 1551 .
- Zhou , W. , Zhou , Z. , Song , S. et al. ( 2003 ). Pt based anode catalysts for direct ethanol fuel cells . Appl. Catal., B 46 ( 2 ): 273 – 285 .
- Xu , C. , Pk , S. , and Liu , Y. ( 2007 ). Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide . J. Power Sources 164 ( 2 ): 527 – 531 .
- Liang , Z.X. , Zhao , T.S. , Xu , J.B. , and Zhu , L.D. ( 2009 ). Mechanism study of the ethanol oxidation reaction on palladium in alkaline media . Electrochim. Acta 54 ( 8 ): 2203 – 2208 .
- Qi , K. , Wang , Q. , Zheng , W. et al. ( 2014 ). Porous single-crystalline palladium nanoflowers with enriched {100} facets for highly enhanced ethanol oxidation . Nanoscale 6 ( 24 ): 15090 – 15097 .
- Fu , S. , Zhu , C. , Du , D. , and Lin , Y. ( 2015 ). Facile one-step synthesis of three-dimensional Pd–Ag bimetallic alloy networks and their electrocatalytic activity toward ethanol oxidation . ACS Appl. Mater. Interfaces 7 ( 25 ): 13842 – 13848 .
- Liang , Y.Q. , Cui , Z.D. , Zhu , S.L. et al. ( 2011 ). Silver nanoparticles supported on TiO 2 nanotubes as active catalysts for ethanol oxidation . J. Catal. 278 ( 2 ): 276 – 287 .
- Cherevko , S. , Kulyk , N. , and Chung , C.-H. ( 2012 ). Utilization of surface active sites on gold in preparation of highly reactive interfaces for alcohols electrooxidation in alkaline media . Electrochim. Acta 69 : 190 – 196 .
- Chen , J. , Cui , X. , Wang , Q. et al. ( 2012 ). One-pot photochemical synthesis of ultrathin Au nanocrystals on co-reduced graphene oxide and its application . J. Colloid Interface Sci. 383 ( 1 ): 140 – 147 .
- Jin , Z. , Wang , Q. , Zheng , W. , and Cui , X. ( 2016 ). Highly ordered periodic Au/TiO 2 hetero-nanostructures for plasmon-induced enhancement of the activity and stability for ethanol electro-oxidation . ACS Appl. Mater. Interfaces 8 ( 8 ): 5273 – 5279 .
- Xu , C.W. , Wang , H. , Shen , P.K. , and Jiang , S.P. ( 2007 ). Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells . Adv. Mater. 19 ( 23 ): 4256 – 4259 .
- Cui , C.-H. , Yu , J.-W. , Li , H.-H. et al. ( 2011 ). Remarkable enhancement of electrocatalytic activity by tuning the Interface of Pd–Au bimetallic nanoparticle tubes . ACS Nano 5 ( 5 ): 4211 – 4218 .
- Dutta , A. , Mahapatra , S.S. , and Datta , J. ( 2011 ). High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications . Int. J. Hydrogen Energy 36 ( 22 ): 14898 – 14906 .
- Oliveira , M.C. , Rego , R. , Fernandes , L.S. , and Tavares , P.B. ( 2011 ). Evaluation of the catalytic activity of Pd–Ag alloys on ethanol oxidation and oxygen reduction reactions in alkaline medium . J. Power Sources 196 ( 15 ): 6092 – 6098 .
- Wang , Q. , Cui , X. , Guan , W. et al. ( 2014 ). A nanoflower shaped gold-palladium alloy on graphene oxide nanosheets with exceptional activity for electrochemical oxidation of ethanol . Microchim. Acta 181 ( 3–4 ): 373 – 380 .
- Zhu , C. , Guo , S. , and Dong , S. ( 2012 ). PdM (M=Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules . Adv. Mater. 24 ( 17 ): 2326 – 2331 .
- Hutter , E. and Fendler , J.H. ( 2004 ). Exploitation of localized surface plasmon resonance . Adv. Mater. 16 ( 19 ): 1685 – 1706 .
- Wu , J.-L. , Chen , F.-C. , Hsiao , Y.-S. et al. ( 2011 ). Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells . ACS Nano 5 ( 2 ): 959 – 967 .
- Wang , H. , You , T. , Shi , W. et al. ( 2012 ). Au/TiO 2 /Au as a plasmonic coupling photocatalyst . J. Phys. Chem. C 116 ( 10 ): 6490 – 6494 .
- Tian , Y. and Tatsuma , T. ( 2005 ). Mechanisms and applications of plasmon-induced charge separation at TiO 2 films loaded with gold nanoparticles . J. Am. Chem. Soc. 127 ( 20 ): 7632 – 7637 .
- Bian , Z. , Tachikawa , T. , Zhang , P. et al. ( 2013 ). Au/TiO 2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity . J. Am. Chem. Soc. 136 ( 1 ): 458 – 465 .
- Xu , Z. , Yu , J. , and Liu , G. ( 2011 ). Enhancement of ethanol electrooxidation on plasmonic Au/TiO 2 nanotube arrays . Electrochem. Commun. 13 ( 11 ): 1260 – 1263 .
- Murdoch , M. , Waterhouse , G. , Nadeem , M. et al. ( 2011 ). The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO 2 nanoparticles . Nat. Chem. 3 ( 6 ): 489 – 492 .
- Kim , K. , Thiyagarajan , P. , Ahn , H.-J. et al. ( 2013 ). Optimization for visible light photocatalytic water splitting: gold-coated and surface-textured TiO 2 inverse opal nano-networks . Nanoscale 5 ( 14 ): 6254 – 6260 .
- Raval , D. , Tripathi , B. , and Ray , A. ( 2016 ). Titanium dioxide nanorod diameter and layer porosity optimization by estimating electrical performance of dye and perovskite sensitized solar cell . J. Porous Mater. 24 ( 1 ): 1 – 15 .
- Yen , Y.C. , Chen , J.A. , Ou , S. et al. ( 2017 ). Plasmon-enhanced photocurrent using gold nanoparticles on a three-dimensional TiO 2 nanowire-web electrode . Sci. Rep. 7 : 42524 .
- Long , P.D. , Chien , D.T. , Trung , N.T. et al. ( 2017 ). Plasmonic effect enhanced photocurrent in nanostructured TiO 2 films decorated with gold nanoparticles . J. Electron. Mater. 46 ( 7 ): 4448 – 4454 .
- Raval , D. , Tripathi , B. , and Ray , A. ( 2018 ). Quantum mechanical investigation of optoelectronic properties of gold nanoparticle attached titanium dioxide nanorods for device applications . J. Nanopart. Res. 20 ( 2 ).
- Zhang , Z. , Zhang , L. , Hedhili , M.N. et al. ( 2012 ). Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO 2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting . Nano Lett. 13 ( 1 ): 14 – 20 .
- Van de Groep , J. , Sheldon , M.T. , Atwater , H.A. , and Polman , A. ( 2016 ). Thermodynamic theory of the plasmoelectric effect . Sci. Rep. 6 .
- Reineck , P. , Brick , D. , Mulvaney , P. , and Bach , U. ( 2016 ). Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency . J. Phys. Chem. Lett. 7 ( 20 ): 4137 – 4141 .
- Ghatak , A. ( 2010 ). Basic Quantum Mechanics . New Delhi : Macmillan Publishers India Limited .
- Bohren , C.F. and Huffman , D.R. ( 2008 ). Absorption and Scattering of Light by Small Particles . Wiley .
- Westcott , S. , Jackson , J. , Radloff , C. , and Halas , N. ( 2002 ). Relative contributions to the plasmon line shape of metal nanoshells . Phys. Rev. B 66 ( 15 ): 155431 .
- Bing , Z. , Dong-Sheng , L. , Lue-Lue , X. , and De-Ren , Y. ( 2010 ). Enhanced optical absorption of amorphous silicon films by Ag nanostructures . Chin. Phys. Lett. 27 ( 3 ): 037303 .
- Tripathi , B. , Yadav , P. , and Kumar , M. ( 2013 ). Plasmon-enhanced light trapping to improve efficiency of TiO 2 nanorod-based dye-sensitized solar cell . Plasmonics 8 ( 3 ): 1501 – 1507 .
- Huang , X. and El-Sayed , M.A. ( 2010 ). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy . J. Adv. Res. 1 ( 1 ): 13 – 28 .
- Jain , P.K. , Lee , K.S. , El-Sayed , I.H. , and El-Sayed , M.A. ( 2006 ). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine . J. Phys. Chem. B 110 ( 14 ): 7238 – 7248 .
- Park , N.-G. , Schlichthörl , G. , van de Lagemaat , J. et al. ( 1999 ). Dye-sensitized TiO 2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl 4 . J. Phys. Chem. B 103 : 3308 – 3314 .
- Zhang , F. and Liu , X. ( 1998 ). Effect of O 2 pressure on the preferred orientation of TiO 2 films prepared by filtered arc deposition . Thin Solid Films 326 : 171 – 174 .
- Nayak , J. , Prabakar , K. , Park , J.W. , and Kim , H. ( 2012 ). Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO 2 nanorod thin films . Electrochim. Acta 65 : 44 – 49 .
- Zhao , L. , Thomas , J.P. , Heinig , N.F. et al. ( 2014 ). Au–Pt alloy nanocatalysts for electro-oxidation of methanol and their application for fast-response non-enzymatic alcohol sensing . J. Mater. Chem. C 2 ( 15 ): 2707 – 2714 .
- Ishikawa , Y. , Wada , K. , Cannon , D.D. et al. ( 2003 ). Strain-induced band gap shrinkage in Ge grown on Si substrate . Appl. Phys. Lett. 82 : 2044 – 2046 .
- Kim , H.-S. , Lee , C.-R. , Im , J.-H. et al. ( 2012 ). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% . Sci. Rep. 2 : 591 .
- Zhao , Y. and Zhu , K. ( 2013 ). Charge transport and recombination in perovskite (CH 3 NH 3 )PbI 3 sensitized TiO 2 solar cells . J. Phys. Chem. Lett. 4 : 2880 – 2884 .
- Linic , S. , Christopher , P. , and Ingram , D.B. ( 2011 ). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy . Nat. Mater. 10 ( 12 ): 911 – 921 .
- Burda , C. , Chen , X. , Narayanan , R. , and El-Sayed , M.A. ( 2005 ). Chemistry and properties of nanocrystals of different shapes . Chem. Rev. 105 ( 4 ): 1025 – 1102 .
- Evanoff , D.D. and Chumanov , G. ( 2005 ). Synthesis and optical properties of silver nanoparticles and arrays . ChemPhysChem 6 ( 7 ): 1221 – 1231 .
- Warren , S.C. and Thimsen , E. ( 2012 ). Plasmonic solar water splitting . Energy Environ. Sci. 5 ( 1 ): 5133 – 5146 .
- Zhang , Y. , Pluchery , O. , Caillard , L. et al. ( 2015 ). Sensing the charge state of single gold nanoparticles via work function measurements . Nano Lett. 15 ( 1 ): 51 – 55 .
- Sarkar , D. , Ghosh , C.K. , and Chattopadhyay , K.K. ( 2012 ). Morphology control of rutile TiO 2 hierarchical architectures and their excellent field emission properties . CrystEngComm 14 ( 8 ): 2683 – 2690 .
- Kowalska , E. , Abe , R. , and Ohtani , B. ( 2009 ). Visible light-induced photocatalytic reaction of gold-modified titanium (IV) oxide particles: action spectrum analysis . Chem. Commun. 2 : 241 – 243 .
- Kowalska , E. , Mahaney , O.O.P. , Abe , R. , and Ohtani , B. ( 2010 ). Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces . Phys. Chem. Chem. Phys. 12 ( 10 ): 2344 – 2355 .
- Ohtani , B. ( 2008 ). Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation . Chem. Lett. 37 ( 3 ): 216 – 229 .
- Hodak , J.H. , Henglein , A. , and Hartland , G.V. ( 2000 ). Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes . J. Phys. Chem. B 104 ( 43 ): 9954 – 9965 .