Environmental Toxicology of Nanomaterials: Advances and Challenges
Wells Utembe
National Institute for Occupational Health (a division of the National Health Laboratory Service), Toxicology and Biochemistry Department, 25 Hospital Street, Johannesburg, 2000 South Africa
University of Johannesburg, Faculty of Health Sciences, Department of Environmental Health, Crn Siemert & Beit Streets, Johannesburg, 2000 South Africa
Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, South Africa
Search for more papers by this authorWells Utembe
National Institute for Occupational Health (a division of the National Health Laboratory Service), Toxicology and Biochemistry Department, 25 Hospital Street, Johannesburg, 2000 South Africa
University of Johannesburg, Faculty of Health Sciences, Department of Environmental Health, Crn Siemert & Beit Streets, Johannesburg, 2000 South Africa
Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, South Africa
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
Due to many unique biological and physicochemical properties, which are only exhibited at the nanoscale, nanomaterials (NMs) have found many applications, including inter alia, in medicines, cosmetics, food, pesticides, textiles, electronics, and construction materials. However, there are concerns over risks posed by NMs to workers, consumers and the environment. The risks emanate from the ability of NMs to translocate from dermal, respiratory, and gastro-intestinal epithelia into the circulatory and lymphatic systems, and ultimately to body tissues and organs, where they can elicit many adverse effects. The adverse effects caused by NMs have been at the center of many studies in environmental toxicology, a field of study that focuses on the effects of toxic agents in humans, the environment, and natural ecosystems. The toxicity of NMs depends on many factors, including size, shape, functional groups, chirality, solubility, reduction–oxidation properties, surface charge, and composition, among others. Therefore, accurate assessment of these physicochemical properties is an absolute imperative. This chapter presents advances, issues, and challenges in the toxicity testing of NMs, including the physicochemical characterization of NMs in both in vitro and in vivo systems as well as in the environment. Moreover, the chapter presents the challenges and recent advances in in vitro , in vivo , and in silico toxicity assessment of NMs.
References
- Lu , B.-M. and Kacew , S. ( 2012 ). Lu's Basic Toxicology: Fundamentals, Target Organs, and Risk Assessment . London : CRC Press .
- Klaassen , C.D. and Amdur , M.O. ( 2008 ). Casarett and Doull's Toxicology: The Basic Science of Poisons . New York : McGraw-Hill .
- Kahru , A. and Dubourguier , H.-C. ( 2010 ). From ecotoxicology to nanoecotoxicology . Toxicology 269 ( 2 ): 105 – 119 .
- Cohen , J.M. , DeLoid , G.M. , and Demokritou , P. ( 2015 ). A critical review of in vitro dosimetry for engineered nanomaterials . Nanomedicine 10 ( 19 ): 3015 – 3032 .
- Sayes , C.M. , Marchione , A.A. , Reed , K.L. , and Warheit , D.B. ( 2007 ). Comparative pulmonary toxicity assessments of C 60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles . Nano Letters 7 ( 8 ): 2399 – 2406 .
- Sayes , C.M. , Reed , K.L. , and Warheit , D.B. ( 2007 ). Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles . Toxicological Sciences 97 ( 1 ): 163 – 180 .
- Kovrižnych , J.A. , Sotníková , R. , Zeljenková , D. et al. ( 2013 ). Acute toxicity of 31 different nanoparticles to zebrafish ( Danio rerio ) tested in adulthood and in early life stages – comparative study . Interdisciplinary Toxicology 6 ( 2 ): 67 – 73 .
- Kwok , K.W.H. , Auffan , M. , Badireddy , A.R. et al. ( 2012 ). Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka ( Oryzias latipes ): effect of coating materials . Aquatic Toxicology 120, 121 : 59 – 66 .
- Gagné , F. , André , C. , Skirrow , R. et al. ( 2012 ). Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach . Chemosphere 89 ( 5 ): 615 – 622 .
- Farmen , E. , Mikkelsen , H.N. , Evensen , Ø. et al. ( 2012 ). Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles . Aquatic Toxicology 108 : 78 – 84 .
- Bilberg , K. , Hovgaard , M.B. , Besenbacher , F. , and Baatrup , E. ( 2012 ). In vivo toxicity of silver nanoparticles and silver ions in zebrafish ( Danio rerio ) . Journal of Toxicology 2012 : 1 – 10 .
- Cui , R. , Chae , Y. , and An , Y.-J. ( 2017 ). Dimension-dependent toxicity of silver nanomaterials on the cladocerans Daphnia magna and Daphnia galeata . Chemosphere 185 : 205 – 212 .
- Nam , S.-H. and An , Y.-J. ( 2019 ). Size- and shape-dependent toxicity of silver nanomaterials in gre en alga Chlorococcum infusionum . Ecotoxicology and Environmental Safety 168 : 388 – 393 .
- An , H.J. , Sarkheil , M. , Park , H.S. et al. ( 2019 ). Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina . Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 218 : 62 – 69 .
-
Choi , S.
,
Kim , S.
,
Bae , Y.-J.
et al. (
2015
).
Size-dependent toxicity of silver nanoparticles to
Glyptotendipes tokunagai
.
Environmental Health and Toxicology
30
:
e2015003
.
10.5620/eht.e2015003 Google Scholar
- Moon , J. , Kwak , J.I. , and An , Y.-J. ( 2019 ). The effects of silver nanomaterial shape and size on toxicity to Caenorhabditis elegans in soil media . Chemosphere 215 : 50 – 56 .
- Suresh , A.K. , Pelletier , D.A. , Wang , W. et al. ( 2012 ). Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types . Langmuir 28 ( 5 ): 2727 – 2735 .
- El Badawy , A.M. , Silva , R.G. , Morris , B. et al. ( 2011 ). Surface charge-dependent toxicity of silver nanoparticles . Environmental Science & Technology 45 ( 1 ): 283 – 287 .
- Subashkumar , S. and Selvanayagam , M. ( 2014 ). First report on: acute toxicity and gill histopathology of fresh water fish Cyprinus carpio exposed to zinc oxide (ZnO) nanoparticles . International Journal of Scientific and Research Publications 4 ( 3 ): 1 – 4 .
- Hao , L. , Chen , L. , Hao , J. , and Zhong , N. ( 2013 ). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp ( Cyprinus carpio ): a comparative study with its bulk counterparts . Ecotoxicology and Environmental Safety 91 : 52 – 60 .
- Adam , N. , Schmitt , C. , Galceran , J. et al. ( 2014 ). The chronic toxicity of ZnO nanoparticles and ZnCl 2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution . Nanotoxicology 8 ( 7 ): 709 – 717 .
- Linhua , H. , Zhenyu , W. , and Baoshan , X. ( 2009 ). Effect of sub-acute exposure to TiO 2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp ( Cyprinus carpio ) . Journal of Environmental Sciences 21 ( 10 ): 1459 – 1466 .
- Vidya , P. and Chitra , K. ( 2017 ). Assessment of acute toxicity (LC 50 -96 h) of aluminium oxide, silicon dioxide and titanium dioxide nanoparticles on the freshwater fish, Oreochromis mossambicus (Peters, 1852) . International Journal of Fisheries and Aquatic Studies 5 ( 1 ): 327 – 332 .
- Banaee , M. , Shahafve , S. , Tahery , S. et al. ( 2016 ). Sublethal toxicity of TiO 2 nanoparticles to common carp ( Cyprinus carpio , Linnaeus, 1758) under visible light and dark conditions . International Journal of Aquatic Biology 4 ( 6 ): 370 – 377 .
- Sendra , M. , Sánchez-Quiles , D. , Blasco , J. et al. ( 2017 ). Effects of TiO 2 nanoparticles and sunscreens on coastal marine microalgae: ultraviolet radiation is key variable for toxicity assessment . Environment International 98 : 62 – 68 .
- Zhang , Y. , Blewett , T.A. , Val , A.L. , and Goss , G.G. ( 2018 ). UV-induced toxicity of cerium oxide nanoparticles (CeO 2 NPs) and the protective properties of natural organic matter (NOM) from the Rio Negro Amazon River . Environmental Science: Nano 5 ( 2 ): 476 – 486 .
- Du , J. , Qv , M. , Zhang , Y. et al. ( 2018 ). The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems . Chemosphere 208 : 698 – 706 .
- Lovern , S.B. and Klaper , R. ( 2006 ). Daphnia magna mortality when exposed to titanium dioxide and fullerene (C 60 ) nanoparticles . Environmental Toxicology and Chemistry 25 ( 4 ): 1132 – 1137 .
- Cimbaluk , G.V. , Ramsdorf , W.A. , Perussolo , M.C. et al. ( 2018 ). Evaluation of multiwalled carbon nanotubes toxicity in two fish species . Ecotoxicology and Environment Safety 150 : 215 – 223 .
- Hu , C. , Li , M. , Cui , Y. et al. ( 2010 ). Toxicological effects of TiO 2 and ZnO nanoparticles in soil on earthworm Eisenia fetida . Soil Biology and Biochemistry 42 ( 4 ): 586 – 591 .
- Nendza , M. , Herbst , T. , Kussatz , C. , and Gies , A. ( 1997 ). Potential for secondary poisoning and biomagnification in marine organisms . Chemosphere 35 ( 9 ): 1875 – 1885 .
- Roberts , A.P. , Mount , A.S. , Seda , B. et al. ( 2007 ). In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna . Environmental Science & Technology 41 ( 8 ): 3025 – 3029 .
- Werlin , R. , Priester , J. , Mielke , R. et al. ( 2011 ). Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain . Nature Nanotechnology 6 ( 1 ): 65 – 71 .
- Larguinho , M. , Correia , D. , Diniz , M.S. , and Baptista , P.V. ( 2014 ). Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels . Journal of Nanoparticle Research 16 ( 8 ): 1 – 11 .
- Shaw , B.J. , Liddle , C.C. , Windeatt , K.M. , and Handy , R.D. ( 2016 ). A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations . Archives of Toxicology 90 ( 9 ): 2077 – 2107 .
- Hinderliter , P.M. , Minard , K.R. , Orr , G. et al. ( 2010 ). ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies . Particle and Fibre Toxicology 7 ( 1 ): 1 – 20 .
- Baer , D.R. , Engelhard , M.H. , Johnson , G.E. et al. ( 2013 ). Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities . Journal of Vacuum Science and Technology A 31 ( 5 ): 050820 .
- Tiede , K. , Boxall , A.B. , Tear , S.P. et al. ( 2008 ). Detection and characterization of engineered nanoparticles in food and the environment . Food Additives and Contaminants 25 ( 7 ): 795 – 821 .
- Mattarozzi , M. , Suman , M. , Cascio , C. et al. ( 2017 ). Analytical approaches for the characterization and quantification of nanoparticles in food and beverages . Analytical and Bioanalytical Chemistry 409 ( 1 ): 63 – 80 .
- Montaño , M.D. , Olesik , J.W. , Barber , A.G. et al. ( 2016 ). Single particle ICP-MS: advances toward routine analysis of nanomaterials . Analytical and Bioanalytical Chemistry 408 ( 19 ): 5053 – 5074 .
- Kuchibhatla , S.V. , Karakoti , A.S. , Baer , D.R. et al. ( 2012 ). Influence of aging and environment on nanoparticle chemistry: implication to confinement effects in nanoceria . Journal of Physical Chemistry C 116 ( 26 ): 14108 – 14114 .
- Xu , R. ( 2008 ). Progress in nanoparticles characterization: sizing and zeta potential measurement . Particuology 6 ( 2 ): 112 – 115 .
- Berg , J.M. , Romoser , A. , Banerjee , N. et al. ( 2009 ). The relationship between pH and zeta potential of ∼30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations . Nanotoxicology 3 ( 4 ): 276 – 283 .
- Baer , D.R. , Amonette , J.E. , Engelhard , M.H. et al. ( 2008 ). Characterization challenges for nanomaterials . Surface and Interface Analysis 40 ( 3, 4 ): 529 – 537 .
- Powers , K.W. , Brown , S.C. , Krishna , V.B. et al. ( 2006 ). Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation . Toxicological Sciences 90 ( 2 ): 296 – 303 .
- Utembe , W. and Gulumian , M. ( 2019 ). Chirality, a neglected physico-chemical property of nanomaterials? A mini-review on the occurrence and importance of chirality on their toxicity . Toxicology Letters 311 : 58 – 65 .
- Kühnel , D. and Nickel , C. ( 2014 ). The OECD expert meeting on ecotoxicology and environmental fate – towards the development of improved OECD guidelines for the testing of nanomaterials . Science of the Total Environment 472 : 347 – 353 .
- Hund-Rinke , K. , Baun , A. , Cupi , D. et al. ( 2016 ). Regulatory ecotoxicity testing of nanomaterials – proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles . Nanotoxicology 10 ( 10 ): 1442 – 1447 .
- Stone , V. , Nowack , B. , Baun , A. et al. ( 2010 ). Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation . Science of the Total Environment 408 ( 7 ): 1745 – 1754 .
- Utembe , W. , Potgieter , K. , Stefaniak , A.B. , and Gulumian , M. ( 2015 ). Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials . Particle and Fibre Toxicology 12 ( 1 ): 1 – 12 .
- Handy , R.D. , Owen , R. , and Valsami-Jones , E. ( 2008 ). The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs . Ecotoxicology 17 ( 5 ): 315 – 325 .
- Demokritou , P. , Büchel , R. , Molina , R.M. et al. ( 2010 ). Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies . Inhalation Toxicology 22 ( sup2 ): 107 – 116 .
- Klumpp , J. and Bertelli , L. ( 2017 ). KDEP: a resource for calculating particle deposition in the res piratory tract . Health Physics 113 ( 2 ): 110 – 121 .
- Rissler , J. , Gudmundsson , A. , Nicklasson , H. et al. ( 2017 ). Deposition efficiency of inhaled particles (15–5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults . Particle and Fibre Toxicology 14 ( 1 ): 1 – 12 .
- Iwaoka , K. , Hosoda , M. , Tokonami , S. et al. ( 2019 ). Development of calculation tool for respiratory tract deposition depending on aerosols particle distribution . Radiation Protection Dosimetry 184 ( 3, 4 ): 388 – 390 .
- Anjilvel , S. and Asgharian , B. ( 1995 ). A multiple-path model of particle deposition in the rat lung . Fundamental and Applied Toxicology 28 ( 1 ): 41 – 50 .
- Bair , W. ( 1989 ). Human respiratory tract model for radiological protection: a revision of the ICRP Dosimetric Model for the Respiratory System . Health Physics 57 : 249 – 252 , discussion 52.
- Phalen , R. , Cuddihy , R. , Fisher , G. et al. ( 1991 ). Main features of the proposed NCRP respiratory tract model . Radiation Protection Dosimetry 38 ( 1–3 ): 179 – 184 .
- Aleksandropoulou , V. and Lazaridis , M. ( 2013 ). Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions . Air Quality, Atmosphere and Health 6 ( 1 ): 13 – 26 .
- Miller , F.J. , Asgharian , B. , Schroeter , J.D. , and Price , O. ( 2016 ). Improvements and additions to the multiple path particle dosimetry model . Journal of Aerosol Science 99 : 14 – 26 .
- Krewski , D. , Acosta , D. Jr. Andersen , M. et al. ( 2010 ). Toxicity testing in the 21st century: a vision and a strategy . Journal of Toxicology and Environmental Health Part B: Critical Reviews 13 ( 2–4 ): 51 – 138 .
- Roggen , E.L. ( 2011 ). In vitro toxicity testing in the twenty-first century . Frontiers in Pharmacology 2 : 3 .
- Clemedson , C. , Barile , F. , Chesné , C. et al. ( 2000 ). MEIC evaluation of acute systemic toxicity: part VII: prediction of human toxicity by results from testing the first 30 reference chemicals with 27 further in vitro assays . Alternatives to Laboratory Animals 28 ( Suppl. 1 ): 161 – 200 .
- Park , M.V. , Lankveld , D.P. , van Loveren , H. , and de Jong , W.H. ( 2009 ). The status of in vitro toxicity studies in the risk assessment of nanomaterials . Nanomedicine 4 ( 6 ): 669 – 685 .
- Garle , M.J. , Fentem , J.H. , and Fry , J.R. ( 1994 ). In vitro cytotoxicity tests for the prediction of acute toxicity in vivo . Toxicology In Vitro 8 ( 6 ): 1303 – 1312 .
-
Freshney , I.
(
2001
).
Application of cell cultures to toxicology
. In:
Cell Culture Methods for In Vitro Toxicology
(ed.
G.N. Stacey
,
A. Doyle
and
M. Ferro
),
9
–
26
.
Dordrecht
:
Springer
.
10.1007/978-94-017-0996-5_2 Google Scholar
- Eisenbrand , G. , Pool-Zobel , B. , Baker , V. et al. ( 2002 ). Methods of in vitro toxicology . Food and Chemical Toxicology 40 ( 2, 3 ): 193 – 236 .
- Fernández , D. , García-Gómez , C. , and Babín , M. ( 2013 ). In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells . Science of the Total Environment 452 : 262 – 274 .
- Yue , Y. , Li , X. , Sigg , L. et al. ( 2017 ). Interaction of silver nanoparticles with algae and fish cells: a si de by side comparison . Journal of Nanobiotechnology 15 ( 1 ): 1 – 11 .
- Yue , Y. , Behra , R. , Sigg , L. et al. ( 2015 ). Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition . Nanotoxicology 9 ( 1 ): 54 – 63 .
- Minghetti , M. and Schirmer , K. ( 2016 ). Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC) . Nanotoxicology 10 ( 10 ): 1526 – 1534 .
- Bols , N. , Dayeh , V. , Lee , L. , and Schirmer , K. ( 2005 ). Use of fish cell lines in the toxicology and ecotoxicology of fish. Piscine cell lines in environmental toxicology . In: Biochemistry and molecular biology of fishes , vol. 6 (ed. T.P. Mommsen and T.W. Moon ), 43 – 84 . New York : Elsevier .
- Andraos , C. , Yu , I.J. , and Gulumian , M. ( 2020 ). Interference: a much-neglected aspect in high-throughput screening of nanoparticles . International Journal of Toxicology 39 ( 5 ): 397 – 421 .
- Vetten , M.A. , Tlotleng , N. , Rascher , D.T. et al. ( 2013 ). Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines . Particle and Fibre Toxicology 10 ( 1 ): 1 – 15 .
- Lee , J. , Lilly , G.D. , Doty , R.C. et al. ( 2009 ). In vitro toxicity testing of nanoparticles in 3D cell culture . Small 5 ( 10 ): 1213 – 1221 .
- Sambale , F. , Lavrentieva , A. , Stahl , F. et al. ( 2015 ). Three dimensional spheroid cell culture for nanoparticle safety testing . Journal of Biotechnology 205 : 120 – 129 .
- Loret , T. , Peyret , E. , Dubreuil , M. et al. ( 2016 ). Air–liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions . Particle and Fibre Toxicology 13 ( 1 ): 58 .
- Mukherjee , D. , Leo , B.F. , Royce , S.G. et al. ( 2014 ). Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver . Journal of Nanoparticle Research 16 ( 10 ): 1 – 16 .
- DeLoid , G.M. , Cohen , J.M. , Pyrgiotakis , G. et al. ( 2015 ). Advanced computational modeling for in vitro nanomaterial dosimetry . Particle and Fibre Toxicology 12 ( 1 ): 1 – 20 .
- Cohen , J.M. , Teeguarden , J.G. , and Demokritou , P. ( 2014 ). An integrated approach for the in vitro dosimetry of engineered nanomaterials . Particle and Fibre Toxicology 11 ( 1 ): 1 – 12 .
-
DeLoid , G.
,
Cohen , J.M.
,
Darrah , T.
et al. (
2014
).
Estimating the effective density of engineered nanomaterials for
in vitro
dosimetry
.
Nature Communications
5
(
1
):
1
–
10
.
10.1038/ncomms4514 Google Scholar
- DeLoid , G.M. , Cohen , J.M. , Pyrgiotakis , G. , and Demokritou , P. ( 2017 ). Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials . Nature Protocols 12 ( 2 ): 355 – 371 .
- Cohen , J. , DeLoid , G. , Pyrgiotakis , G. , and Demokritou , P. ( 2013 ). Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry . Nanotoxicology 7 ( 4 ): 417 – 431 .
- Pal , A.K. , Bello , D. , Cohen , J. , and Demokritou , P. ( 2015 ). Implications of in vitro dosimetr y on toxicological ranking of low aspect ratio engineered nanomaterials . Nanotoxicology 9 ( 7 ): 871 – 885 .
- Sabljic , A. ( 2001 ). QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk . Chemosphere 43 ( 3 ): 363 – 375 .
- Puzyn , T. , Rasulev , B. , Gajewicz , A. et al. ( 2011 ). Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles . Nature Nanotechnology 6 ( 3 ): 175 – 178 .
- Lu , X. , Tao , S. , Hu , H. , and Dawson , R.W. ( 2000 ). Estimation of bioconcentration factors of nonionic organic compounds in fish by molecular connectivity indices and polarity correction factors . Chemosphere 41 ( 10 ): 1675 – 1688 .
- de Melo , E.B. ( 2012 ). A new quantitative structure–property relationship model to predict bioconcentration factors of polychlorinated biphenyls (PCBs) in fishes using E-state index and topological descriptors . Ecotoxicology and Environment Safety 75 : 213 – 222 .
- Sabljic , A. , Guesten , H. , Hermens , J. , and Opperhuizen , A. ( 1993 ). Modeling octanol/water partition coefficients by molecular topology: chlorinated benzenes and biphenyls . Environmental Science & Technology 27 ( 7 ): 1394 – 1402 .
- Gramatica , P. and Papa , E. ( 2005 ). An update of the BCF QSAR model based on theoretical molecular descriptors . Molecular Informatics 24 ( 8 ): 953 – 960 .
- Chen , J. , Quan , X. , Yazhi , Z. et al. ( 2001 ). Quantitative structure–property relationship studies on n -octanol/water partitioning coefficients of PCDD/Fs . Chemosphere 44 ( 6 ): 1369 – 1374 .
- Wei , D. , Zhang , A. , Wu , C. et al. ( 2001 ). Progressive study and robustness test of QSAR model based on quantum chemical parameters for predicting BCF of selected polychlorinated organic compounds (PCOCs) . Chemosphere 44 ( 6 ): 1421 – 1428 .
- Park , J.H. and Lee , H.J. ( 1993 ). Estimation of bioconcentration factor in fish, adsorption coefficient for soils and sediments and interfacial tension with water for organic nonelectrolytes based on the linear solvation energy relationships . Chemosphere 26 ( 10 ): 1905 – 1916 .
- Hawker , D. ( 1990 ). Description of fish bioconcentration factors in terms of solvatochromic parameters . Chemosphere 20 ( 5 ): 467 – 477 .
- Klüver , N. , Vogs , C. , Altenburger , R. et al. ( 2016 ). Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test . Chemosphere 164 : 164 – 173 .
-
Puzyn , T.
,
Gajewicz , A.
,
Leszczynska , D.
, and
Leszczynski , J.
(
2010
).
Nanomaterials – the next great challenge for QSAR modelers
. In:
Recent Advances in QSAR Studies: Methods and Applications
(ed.
T. Puzyn
,
J. Leszczynski
and
M.T.D. Cronin
),
383
–
409
.
Dordrecht
:
Springer
.
10.1007/978-1-4020-9783-6_14 Google Scholar
- Puzyn , T. , Leszczynska , D. , and Leszczynski , J. ( 2009 ). Toward the development of “nano-QSARs”: advances and challenges . Small 5 ( 22 ): 2494 – 2509 .
- Asati , A. , Santra , S. , Kaittanis , C. , and Perez , J.M. ( 2010 ). Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles . ACS Nano 4 ( 9 ): 5321 – 5331 .
- Lu , W. , Senapati , D. , Wang , S. et al. ( 2010 ). Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes . Chemical Physics Letters 487 ( 1–3 ): 92 – 96 .
- Mu , Y. , Wu , F. , Zhao , Q. et al. ( 2016 ). Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs . Nanotoxicology 10 ( 9 ): 1207 – 1214 .
- Gajewicz , A. , Schaeublin , N. , Rasulev , B. et al. ( 2015 ). Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies . Nanotoxicology 9 ( 3 ): 313 – 325 .
- Toropov , A.A. , Leszczynska , D. , and Leszczynski , J. ( 2007 ). Predicting water solubility and octanol water partition coefficient for carbon nanotubes based on the chiral vector . Computational Biology and Chemistry 31 ( 2 ): 127 – 128 .
- Ambure , P. , Aher , R.B. , Gajewicz , A. et al. ( 2015 ). “NanoBRIDGES” software: open access tools to perform QSAR and nano-QSAR modeling . Chemometrics and Intelligent Laboratory Systems 147 : 1 – 13 .
- Delmaar , C.J. , Peijnenburg , W.J. , Oomen , A.G. et al. ( 2015 ). A practical approach to determine dose metrics for nanomaterials . Environmental Toxicology and Chemistry 34 ( 5 ): 1015 – 1022 .
- Oberdörster , G. , Oberdörster , E. , and Oberdörster , J. ( 2005 ). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles . Environmental Health Perspectives 113 ( 7 ): 823 – 839 .
- Calabrese , E.J. ( 2008 ). Hormesis: why it is important to toxicology and toxicologists . Environmental Toxicology and Chemistry 27 ( 7 ): 1451 – 1474 .
- Iavicoli , I. , Fontana , L. , Leso , V. , and Calabrese , E.J. ( 2014 ). Hormetic dose–responses in nanotechnology studies . Science of the Total Environment 487 : 361 – 374 .
- USEPA ( 2006 ). Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk . U.S. Environmental Protection Agency , Washington, DC , EPA/600/R-05/043F. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=157668 Accessed 8 march 2022.
- Li , M. , Al-Jamal , K.T. , Kostarelos , K. , and Reineke , J. ( 2010 ). Physiologically based pharmacokinetic modeling of nanoparticles . ACS Nano 4 ( 11 ): 6303 – 6317 .
- Lin , Z. , Monteiro-Riviere , N.A. , and Riviere , J.E. ( 2016 ). A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice . Nanotoxicology 10 ( 2 ): 162 – 172 .
- Li , M. , Panagi , Z. , Avgoustakis , K. , and Reineke , J. ( 2012 ). Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content . International Journal of Nanomedicine 7 : 1345 .
- Giri , J. , Diallo , M.S. , Iii , W.A.G. et al. ( 2009 ). Partitioning of poly(amidoamine) dendrimers between n -octanol and water . Environmental Science & Technology 43 ( 13 ): 5123 – 5129 .
- Hristovski , K.D. , Westerhoff , P.K. , and Posner , J.D. ( 2011 ). Octanol–water distribution of engineere d nanomaterials . Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering 46 ( 6 ): 636 – 647 .
- Y Xiao and M.R. Wiesner (eds.) ( 2012 ). Octanol–water partition coefficient ( K ow ): is it a good measure of hydrophobicity of nanoparticles? Abstracts of Papers of the American Chemical Society, Washington, DC, United States (19 August 2012): American Chemical Society.
- Clewell , R.A. and Clewell , H.J. III ( 2008 ). Development and specification of physiologically based pharmacokinetic models for use in risk assessment . Regulatory Toxicology and Pharmacology 50 ( 1 ): 129 – 143 .
- Utembe , W. , Clewell , H. , Sanabria , N. et al. ( 2020 ). Current approaches and techniques in physiologically based pharmacokinetic (PBPK) modelling of nanomaterials . Nanomaterials 10 ( 7 ): 1267 .