Aerogel for Environmental Remediation
Abdul S. Jatoi
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorZubair Hashmi
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorNabisab Mujawar Mubarak
Petroleum and Chemical Engineering, Faculty of Engineering, University of Technology Brunei, Bandar Seri Begawan, BE1410 Brunei Darussalam
Search for more papers by this authorFaisal A. Tanjung
Universitas Medan Area, Faculty of Science and Technology, Jalan Kolam No. 1, Medan, North Sumatera, 20223 Indonesia
Search for more papers by this authorMuhammad Ahmed
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorShaukat A. Mazari
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorFaheem Akhter
Department of Chemical Engineering, QUEST, Sakrand Road, Shaheed Benazirabad, Nawabshah, Sindh, 67450 Pakistan
Search for more papers by this authorShoaib Ahmed
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorAbdul S. Jatoi
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorZubair Hashmi
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorNabisab Mujawar Mubarak
Petroleum and Chemical Engineering, Faculty of Engineering, University of Technology Brunei, Bandar Seri Begawan, BE1410 Brunei Darussalam
Search for more papers by this authorFaisal A. Tanjung
Universitas Medan Area, Faculty of Science and Technology, Jalan Kolam No. 1, Medan, North Sumatera, 20223 Indonesia
Search for more papers by this authorMuhammad Ahmed
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorShaukat A. Mazari
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorFaheem Akhter
Department of Chemical Engineering, QUEST, Sakrand Road, Shaheed Benazirabad, Nawabshah, Sindh, 67450 Pakistan
Search for more papers by this authorShoaib Ahmed
Department of Chemical Engineering, Dawood University of Engineering and Technology, New Muhammad Ali Jinnah Road Jamshed Quarters Muslimabad Karachi, Karachi, Sindh, 74800 Pakistan
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
Aerogel is a special porous material with many outstanding physical and chemical properties, such as low density, high porosity, high surface area, and adjustable surface chemistry. Thanks to the latest advances in the synthesis of different types of aerogels, this porous material's feasibility in several applications has been widely explored. In a various of high-performance applications, aerogels have received much attention as an adsorption medium that removes a variety of environmental and human health pollutants. Although the performance of aerogels in environmental sanitation is encouraging, some shortcomings of aerogels, such as complex drying process, mechanically fragile structure, and processing costs, have also been taken into account and determined in some studies degree of relief. This review chapter aims to describe the synthesis and processing of aerogels and their latest applications in air purification, such as carbon dioxide capture and volatile organic compound (VOC) removal, as well as applications in the treatment of air, water, oils and toxic organic compounds, and heavy metals ion removal.
References
- Liu , H. , Geng , B. , Chen , Y. , and Wang , H. ( 2017 ). Review on the aerogel-type oil sorbents derived from nanocellulose . ACS Sustainable Chemistry & Engineering 5 : 49 – 66 .
- Maleki , H. , Durães , L. , and Portugal , A. ( 2014 ). An overview on silica aerogels synthesis and different mechanical reinforcing strategies . Journal of Non-Crystalline Solids 385 : 55 – 74 .
- Yang , W.J. , Yuen , A.C.Y. , Li , A. et al. ( 2019 ). Recent progress in bio-based aerogel absorbents for oil/water separation . Cellulose 26 ( 11 ): 6449 – 6476 .
- Karamikamkar , S. , Naguib , H.E. , and Park , C.B. ( 2020 ). Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review . Advances in Colloid and Interface Science 276 : 102101 .
- Wu , X. , Shao , G. , Liu , S. et al. ( 2017 ). A new rapid and economical one-step method for preparing SiO 2 aerogels using supercritical extraction . Powder Technology 312 : 1 – 10 .
- Maleki , H. ( 2016 ). Recent advances in aerogels for environmental remediation applications: a review . Chemical Engineering Journal 300 : 98 – 118 .
- Shafi , S. , Navik , R. , Ding , X. , and Zhao , Y. ( 2019 ). Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel . Journal of Non-Crystalline Solids 503 : 78 – 83 .
- Liu , P. , Gao , H. , Chen , X. et al. ( 2020 ). In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection . Composites Part B: Engineering 195 : 108072 .
- Rezaei , S. , Zolali , A.M. , Jalali , A. , and Park , C.B. ( 2020 ). Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor . Journal of Colloid and Interface Science 561 : 890 – 901 .
- Lee , J.-H. and Park , S.-J. ( 2020 ). Recent advances in preparations and applications of carbon aerogels: a review . Carbon 163 : 1 – 18 .
- Lu , K.-Q. , Xin , X. , Zhang , N. et al. ( 2018 ). Photoredox catalysis over graphene aerogel-supported composites . Journal of Materials Chemistry A 6 : 4590 – 4604 .
- Lamy-Mendes , A. , Silva , R.F. , and Durães , L. ( 2018 ). Advances in carbon nanostructure–silica aerogel composites: a review . Journal of Materials Chemistry A 6 : 1340 – 1369 .
-
Yeo , J.
,
Liu , Z.
, and
Ng , T.Y.
(
2020
).
Silica aerogels: a review of molecular dynamics modelling and characterization of the structural, thermal, and mechanical properties
. In:
Handbook of Materials Modeling: Applications: Current and Emerging Materials
(ed.
W. Andreoni
and
S. Yip
),
1575
–
1595
.
10.1007/978-3-319-44680-6_83 Google Scholar
- Abdul Khalil , H.P. , Adnan , A.S. , Yahya , E.B. et al. ( 2020 ). A review on plant cellulose nanofibre-based aerogels for biomedical applications . Polymers 12 ( 8 ): 1759 .
-
Maleki , H.
and
Hüsing , N.
(
2018
).
Aerogels as promising materials for environmental remediation – a broad insight into the environmental pollutants removal through adsorption and (photo)catalytic processes
. In:
New Polymer Nanocomposites for Environmental Remediation
(ed.
C.M. Hussain
and
A.K. Mishra
),
389
–
436
.
Elsevier
.
10.1016/B978-0-12-811033-1.00016-0 Google Scholar
- Wu , B. , Zhu , G. , Dufresne , A. , and Lin , N. ( 2019 ). Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor . ACS Applied Materials & Interfaces 11 : 16048 – 16058 .
- Yashvanth , V. and Chowdhury , S. ( 2021 ). An investigation of silica aerogel to reduce acoustic crosstalk in CMUT arrays . Sensors 21 : 1459 .
- Kumar , A. , Rana , A. , Sharma , G. et al. ( 2018 ). Aerogels and metal–organic frameworks for environmental remediation and energy production . Environmental Chemistry Letters 16 ( 3 ): 797 – 820 .
- Zhang , R. , Wan , W. , Qiu , L. et al. ( 2017 ). Preparation of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation . Applied Surface Science 419 : 342 – 347 .
- Myung , Y. , Jung , S. , Tung , T.T. et al. ( 2019 ). Graphene-based aerogels derived from biomass for energy storage and environmental remediation . ACS Sustainable Chemistry and Engineering 7 : 3772 – 3782 .
- Parale , V.G. , Kim , T. , Phadtare , V.D. et al. ( 2019 ). SnO 2 aerogel deposited onto polymer-derived carbon foam for environmental remediation . Journal of Molecular Liquids 287 : 110990 .
- Tripathi , A. , Parsons , G.N. , Rojas , O.J. , and Khan , S.A. ( 2017 ). Featherlight, mechanically robust cellulose ester aerogels for environmental remediation . ACS Omega 2 : 4297 – 4305 .
- Khan , M.K. , Khan , M.I. , and Rehan , M. ( 2020 ). The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan . Financial Innovation 6 : 1 – 13 .
- Peters , G.P. , Andrew , R.M. , Canadell , J.G. et al. ( 2020 ). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies . Nature Climate Change 10 ( 1 ): 3 – 6 .
- Qiao , W. , Lu , H. , Zhou , G. et al. ( 2020 ). A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer . Journal of Cleaner Production 244 : 118612 .
- Bekun , F.V. , Emir , F. , and Sarkodie , S.A. ( 2019 ). Another look at the relationship between energy consumption, carbon dioxide emissions, and economic growth in South Africa . Science of the Total Environment 655 : 759 – 765 .
- Shindell , D. , Faluvegi , G. , Seltzer , K. , and Shindell , C. ( 2018 ). Quantified, localized health benefits of accelerated carbon dioxide emissions reductions . Nature Climate Change 8 : 291 – 295 .
- Ejsmont , A. , Andreo , J. , Lanza , A. et al. ( 2021 ). Applications of reticular diversity in metal–organic frameworks: an ever-evolving state of the art . Coordination Chemistry Reviews 430 : 213655 . https://doi.org/10.1016/j.ccr.2020.213655 .
- Mohseni-Bandpei , A. , Eslami , A. , Kazemian , H. et al. ( 2020 ). A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: characterization and optimization of the adsorption data using response surface methodology . Environmental Technology & Innovation 18 : 100642 . https://doi.org/10.1016/j.eti.2020.100642 .
- Chua , S.F. , Nouri , A. , Ang , W.L. et al. ( 2021 ). The emergence of multifunctional adsorbents and their role in environmental remediation . Journal of Environmental Chemical Engineering 9 : 104793 . https://doi.org/10.1016/j.jece.2020.104793 .
-
Pooresmaeil , M.
and
Namazi , H.
(
2020
).
Chapter 14: Application of polysaccharide-based hydrogels for water treatments
. In:
Hydrogels Based on Natural Polymers
(ed.
Y. Chen
),
411
–
455
.
Elsevier
https://doi.org/10.1016/B978-0-12-816421-1.00014-8
.
10.1016/B978-0-12-816421-1.00014-8 Google Scholar
- Da'na , E. ( 2017 ). Adsorption of heavy metals on functionalized-mesoporous silica: a review . Microporous and Mesoporous Materials 247 : 145 – 157 . https://doi.org/10.1016/j.micromeso.2017.03.050 .
- Sheng , X. , Shi , H. , Yang , L. et al. ( 2021 ). Rationally designed conjugated microporous polymers for contaminants adsorption . Science of the Total Environment 750 : 141683 . https://doi.org/10.1016/j.scitotenv.2020.141683 .
- Wieszczycka , K. , Staszak , K. , Woźniak-Budych , M.J. et al. ( 2021 ). Surface functionalization – the way for advanced applications of smart materials . Coordination Chemistry Reviews 436 : 213846 . https://doi.org/10.1016/j.ccr.2021.213846 .
- Mukhtar , A. , Saqib , S. , Mellon , N.B. et al. ( 2020 ). A review on CO 2 capture via nitrogen-doped porous polymers and catalytic conversion as a feedstock for fuels . Journal of Cleaner Production 277 : 123999 . https://doi.org/10.1016/j.jclepro.2020.123999 .
- Wu , Y. , Zhang , Y. , Chen , N. et al. ( 2018 ). Effects of amine loading on the properties of cellulose nanofibrils aerogel and its CO 2 capturing performance . Carbohydrate Polymers 194 : 252 – 259 .
- Kumar , V. , Lee , Y.-S. , Shin , J.-W. et al. ( 2020 ). Potential applications of graphene-based nanomaterials as adsorbent for removal of volatile organic compounds . Environment International 135 : 105356 . https://doi.org/10.1016/j.envint.2019.105356 .
- Wang , C. , Yang , S. , Ma , Q. et al. ( 2017 ). Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds . Carbon 118 : 765 – 771 . https://doi.org/10.1016/j.carbon.2017.04.001 .
- Amonette , J.E. and Matyáš , J. ( 2017 ). Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review . Microporous and Mesoporous Materials 250 : 100 – 119 . https://doi.org/10.1016/j.micromeso.2017.04.055 .
- Hasanpour , M. and Hatami , M. ( 2020 ). Photocatalytic performance of aerogels for organic dyes removal from wastewaters: review study . Journal of Molecular Liquids 309 : 113094 . https://doi.org/10.1016/j.molliq.2020.113094 .
- Dolai , S. , Bhunia , S.K. , and Jelinek , R. ( 2017 ). Carbon-dot-aerogel sensor for aromatic volatile organic compounds . Sensors and Actuators B: Chemical 241 : 607 – 613 .
- Baig , N. , Ihsanullah , Sajid , M. , and Saleh , T.A. ( 2019 ). Graphene-based adsorbents for the removal of toxic organic pollutants: a review . Journal of Environmental Management 244 : 370 – 382 . https://doi.org/10.1016/j.jenvman.2019.05.047 .
- Abdullah , S.R.S. , Al-Baldawi , I.A. , Almansoory , A.F. et al. ( 2020 ). Plant-assisted remediation of hydrocarbons in water and soil: application, mechanisms, challenges and opportunities . Chemosphere 247 : 125932 . https://doi.org/10.1016/j.chemosphere.2020.125932 .
- Garcia-Segura , S. , Ocon , J.D. , and Chong , M.N. ( 2018 ). Electrochemical oxidation remediation of real wastewater effluents – a review . Process Safety and Environmental Protection 113 : 48 – 67 . https://doi.org/10.1016/j.psep.2017.09.014 .
- Rasheed , T. , Shafi , S. , Bilal , M. et al. ( 2020 ). Surfactants-based remediation as an effective approach for removal of environmental pollutants – a review . Journal of Molecular Liquids 318 : 113960 . https://doi.org/10.1016/j.molliq.2020.113960 .
- Mandeep , G.A. and Kakkar , R. ( 2020 ). Graphene-based adsorbents for water remediation by removal of organic pollutants: theoretical and experimental insights . Chemical Engineering Research and Design 153 : 21 – 36 . https://doi.org/10.1016/j.cherd.2019.10.013 .
- Yu , L. , Hao , G. , Gu , J. et al. ( 2015 ). Fe 3 O 4 /PS magnetic nanoparticles: synthesis, characterization and their application as sorbents of oil from waste water . Journal of Magnetism and Magnetic Materials 394 : 14 – 21 . https://doi.org/10.1016/j.jmmm.2015.06.045 .
- Chen , J. , You , H. , Xu , L. et al. ( 2017 ). Facile synthesis of a two-tier hierarchical structured superhydrophobic–superoleophilic melamine sponge for rapid and efficient oil/water separation . Journal of Colloid and Interface Science 506 : 659 – 668 . https://doi.org/10.1016/j.jcis.2017.07.066 .
- Wu , X. , Wu , D. , Fu , R. , and Zeng , W. ( 2012 ). Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal . Dyes and Pig ments 95 : 689 – 694 . https://doi.org/10.1016/j.dyepig.2012.07.001 .
- Qin , G. , Yao , Y. , Wei , W. , and Zhang , T. ( 2013 ). Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water . Applied Surface Science 280 : 806 – 811 . https://doi.org/10.1016/j.apsusc.2013.05.066 .
- Bi , H. , Huang , X. , Wu , X. et al. ( 2014 ). Carbon microbelt aerogel prepared by waste paper: an efficient and recyclable sorbent for oils and organic solvents . Small 10 ( 17 ): 3544 – 3550 .
- Liu , H. , Sha , W. , Cooper , A.T. , and Fan , M. ( 2009 ). Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds . Colloids and Surfaces A: Physicochemical and Engineering Aspects 347 : 38 – 44 . https://doi.org/10.1016/j.colsurfa.2008.11.033 .
- Chang , X. , Chen , D. , and Jiao , X. ( 2010 ). Starch-derived carbon aerogels with high-performance for sorption of cationic dyes . Polymer 51 : 3801 – 3807 . https://doi.org/10.1016/j.polymer.2010.06.018 .
- Abramian , L. and El-Rassy , H. ( 2009 ). Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel . Chemical Engineering Journal 150 : 403 – 410 . https://doi.org/10.1016/j.cej.2009.01.019 .
- Maldonado-Hódar , F.J. , Moreno-Castilla , C. , Carrasco-Marín , F. , and Pérez-Cadenas , A.F. ( 2007 ). Reversible toluene adsorption on monolithic carbon aerogels . Journal of Hazardous Materials 148 : 548 – 552 . https://doi.org/10.1016/j.jhazmat.2007.03.007 .
- Liu , T. , Huang , M. , Li , X. et al. ( 2016 ). Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids . Carbon 100 : 456 – 464 . https://doi.org/10.1016/j.carbon.2016.01.038 .
- Jin , C. , Han , S. , Li , J. , and Sun , Q. ( 2015 ). Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents . Carbohydrate Polymers 123 : 150 – 156 . https://doi.org/10.1016/j.carbpol.2015.01.056 .
- Hong , J.-Y. , Sohn , E.-H. , Park , S. , and Park , H.S. ( 2015 ). Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel . Chemical Engineering Journal 269 : 229 – 235 . https://doi.org/10.1016/j.cej.2015.01.066 .
- Li , Y. , Zhang , R. , Tian , X. et al. ( 2016 ). Facile synthesis of Fe 3 O 4 nanoparticles decorated on 3D graphene aerogels as broad-spectrum sorbents for water treatment . Applied Surface Science 369 : 11 – 18 . https://doi.org/10.1016/j.apsusc.2016.02.019 .
- Aydin , G.O. and Sonmez , H.B. ( 2015 ). Hydrophobic poly(alkoxysilane) organogels as sorbent material for oil spill cleanup . Marine Pollution Bulletin 96 : 155 – 164 . https://doi.org/10.1016/j.marpolbul.2015.05.033 .
- Perdigoto , M.L.N. , Martins , R.C. , Rocha , N. et al. ( 2012 ). Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions . Journal of Colloid and Interface Science 380 : 134 – 140 . https://doi.org/10.1016/j.jcis.2012.04.062 .
- Chin , S.F. , Rom ainor , A.N.B. , and Pang , S.C. ( 2014 ). Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity . Materials Letters 115 : 241 – 243 .
- Suchithra , P.S. , Vazhayal , L. , Peer Mohamed , A. , and Ananthakumar , S. ( 2012 ). Mesoporous organic–inorganic hybrid aerogels through ultrasonic assisted sol–gel intercalation of silica–PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution . Chemical Engineering Journal 200–202 : 589 – 600 . https://doi.org/10.1016/j.cej.2012.06.083 .
- Yang , S. , Chen , L. , Mu , L. , and Ma , P.-C. ( 2014 ). Magnetic graphene foam for efficient adsorption of oil and organic solvents . Journal of Colloid and Interface Science 430 : 337 – 344 . https://doi.org/10.1016/j.jcis.2014.05.062 .
- Kabiri , S. , Tran , D.N. , Altalhi , T. , and Losic , D. ( 2014 ). Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal . Carbon 80 : 523 – 533 .
- Chen , X. , Liang , Y.N. , Tang , X.-Z. et al. ( 2017 ). Additive-free poly(vinylidene fluoride) aerogel for oil/water separation and rapid oil absorption . Chemical Engineering Journal 308 : 18 – 26 .
- Hasanpour , M. and Hatami , M. ( 2020 ). Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study . Advances in Colloid and Interface Science 284 : 102247 . https://doi.org/10.1016/j.cis.2020.102247 .
- Lei , C. , Gao , J. , Ren , W. et al. ( 2019 ). Fabrication of metal–organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water . Carbohydrate Polymers 205 : 35 – 41 . https://doi.org/10.1016/j.carbpol.2018.10.029 .
- Li , D. , Tian , X. , Wang , Z. et al. ( 2020 ). Multifunctional adsorbent based on metal–organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant . Chemical Engineering Journal 383 : 123127 . https://doi.org/10.1016/j.cej.2019.123127 .
- Li , Z. , Shao , L. , Ruan , Z. et al. ( 2018 ). Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions . Carbohydrate Polymers 193 : 221 – 227 . https://doi.org/10.1016/j.carbpol.2018.04.003 .
- Wei , J. , Yang , Z. , Sun , Y. et al. ( 2019 ). Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water . Journal of Materials Science 54 ( 8 ): 6709 – 6718 . https://doi.org/10.1007/s10853-019-03322-0 .
- Zhan , W. , Gao , L. , Fu , X. et al. ( 2019 ). Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal . Applied Surface Science 467, 468 : 1122 – 1133 . https://doi.org/10.1016/j.apsusc.2018.10.248 .
- Ali , Z. , Khan , A. , and Ahmad , R. ( 2015 ). The use of functionalized aerogels as a low level chromium scavenger . Microporous and Mesoporous Materials 203 : 8 – 16 . https://doi.org/10.1016/j.micromeso.2014.10.004 .
- Štandeker , S. , Veronovski , A. , Novak , Z. , and Knez , Ž. ( 2011 ). Silica aerogels modified with mercapto functional groups used for Cu(II) and Hg(II) removal from aqueous sol utions . Desalination 269 : 223 – 230 . https://doi.org/10.1016/j.desal.2010.10.064 .
- Deze , E.G. , Papageorgiou , S.K. , Favvas , E.P. , and Katsaros , F.K. ( 2012 ). Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu 2+ and Cd 2+ ion sorption . Chemical Engineering Journal 209 : 537 – 546 . https://doi.org/10.1016/j.cej.2012.07.133 .
- Tadayon , F. , Motahar , S. , and Hosseini , M. ( 2012 ). Application of Taguchi method for optimizing the adsorption of lead ions on nanocomposite silica aerogel activated carbon . Academic Research International 2 : 42 .
- Štandeker , S. , Veronovski , A. , Novak , Z. , and Knez , Ž. ( 2011 ). Silica aerogels modified with mercapto functional groups used for Cu(II) and Hg(II) removal from aqueous solutions . Desalination 269 ( 1 ): 223 – 230 . https://doi.org/10.1016/j.desal.2010.10.064 .
-
Pouretedal , H.
and
Kazemi , M.
(
2012
).
Characterization of modified silica aerogel using sodium silicate precursor and its application as adsorbent of Cu
2+
, Cd
2+
, and Pb
2+
ions
.
International Journal of Industrial Chemistry
3
:
1
–
8
.
10.1186/2228-5547-3-20 Google Scholar
- Faghihian , H. , Nourmoradi , H. , and Shokouhi , M. ( 2012 ). Performance of silica aerogels modified with amino functional groups in Pb(II) and Cd(II) removal from aqueous solutions . Polish Journal of Chemical Technology 14 : 50 – 56 .
- Falahnejad , M. , Mousavi , H.Z. , Shirkhanloo , H. , and Rashidi , A. ( 2016 ). Preconcentration and separation of ultra-trace amounts of lead using ultrasound-assisted cloud point-micro solid phase extraction based on amine functionalized silica aerogel nanoadsorbent . Microchemical Journal 125 : 236 – 241 .
- Li , Z. , Zhao , S. , Koebel , M.M. , and Malfait , W.J. ( 2020 ). Silica aerogels with tailored chemical functionality . Materials & Design 193 : 108833 . https://doi.org/10.1016/j.matdes.2020.108833 .
-
Maleki , H.
and
Hüsing , N.
(
2018
).
Chapter 16: Aerogels as promising materials for environmental remediation – a broad insight into the environmental pollutants removal through adsorption and (photo)catalytic processes
. In:
New Polymer Nanocomposites for Environmental Remediation
(ed.
C.M. Hussain
and
A.K. Mishra
),
389
–
436
.
Elsevier
https://doi.org/10.1016/B978-0-12-811033-1.00016-0
.
10.1016/B978-0-12-811033-1.00016-0 Google Scholar
- Yang , P. , Yang , L. , Wang , Y. et al. ( 2019 ). An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation–π interactions . Journal of Materials Chemistry A 7 : 531 – 539 .
- Sajid , M. , Nazal , M.K. , Ihsanullah et al. ( 2018 ). Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review . Separation and Purification Technology 191 : 400 – 423 . https://doi.org/10.1016/j.seppur.2017.09.011 .