Nanomaterials and Their Thin Films for Photocatalytic Air Purification
Juliane Z. Marinho
Universidade Federal de Uberlândia, Institute of Chemistry, Laboratory of Photochemistry and Materials Science – LAFOT-CM, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38400-902 Brazil
Search for more papers by this authorAntonio Otavio T. Patrocinio
Universidade Federal de Uberlândia, Institute of Chemistry, Laboratory of Photochemistry and Materials Science – LAFOT-CM, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38400-902 Brazil
Search for more papers by this authorJuliane Z. Marinho
Universidade Federal de Uberlândia, Institute of Chemistry, Laboratory of Photochemistry and Materials Science – LAFOT-CM, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38400-902 Brazil
Search for more papers by this authorAntonio Otavio T. Patrocinio
Universidade Federal de Uberlândia, Institute of Chemistry, Laboratory of Photochemistry and Materials Science – LAFOT-CM, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38400-902 Brazil
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
There is a growing concern about the impact of air quality on human health. The industrialization based on the large use of fossil fuels has led to increased production of harmful air pollutants, such as volatile organic compounds (VOCs), carbon monoxide (CO), nitrogen and sulfur oxides (NO x , SO x ), pathogens, and particulate materials. Looking at cost-effective ways to eliminate such pollutants, nanostructured materials that can act as photocatalysts for air purification are one of the potential energy-efficient methods for pollution control, adding new functionalities to traditional building materials. In this chapter, an overview of the recent development of air purification photocatalytic systems based on nanostructured metal oxide semiconductors, carbon-based materials, and heterostructures is provided as well as state-of-art material design strategies aimed at improving their performances.
References
- González-Martín , J. , Kraakman , N.J.R. , Pérez , C. et al. ( 2021 ). A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control . Chemosphere 262 : 128376 .
- Cohen , A.J. , Brauer , M. , Burnett , R. et al. ( 2017 ). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015 . Lancet 389 ( 10082 ): 1907 – 1918 .
- Lelieveld , J. , Evans , J.S. , Fnais , M. et al. ( 2015 ). The contribution of outdoor air pollution sources to premature mortality on a global scale . Nature 525 ( 7569 ): 367 – 371 .
- Ren , H. , Koshy , P. , Chen , W.F. et al. ( 2017 ). Photocatalytic materials and technologies for air purification . Journal of Hazardous Materials 325 : 340 – 366 .
- Nath , R.K. , Zain , M.F.M. , and Jamil , M. ( 2016 ). An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: a review . Renewable and Sustainable Energy Reviews 62 : 1184 – 1194 .
- Nazaroff , W.W. and Goldstein , A.H. ( 2015 ). Indoor chemistry: research opportunities and challenges . Indoor Air 25 ( 4 ): 357 – 361 .
- Sánchez , B. , Sánchez-Muñoz , M. , Muñoz-Vicente , M. et al. ( 2012 ). Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions . Chemosphere 87 ( 6 ): 625 – 630 .
- Boyjoo , Y. , Sun , H. , Liu , J. et al. ( 2017 ). A review on photocatalysis for air treatment: from catalyst development to reactor design . Chemical Engineering Journal 310 : 537 – 559 .
- Kong , L. , Li , X. , Song , P. , and Ma , F. ( 2021 ). Porous graphitic carbon nitride nanosheets for photoca talytic degradation of formaldehyde gas . Chemical Physics Letters 762 : 138132 .
- Jiang , Z. and Yu , X. (Bill) ( 2020 ). Performance of visible-light-driven photocatalytic pavement in reduction of motor vehicles' exhaust gas . Transportation Research Record 2674 ( 11 ): 512 – 519 .
- Amini , N. , Soleimani , M. , and Mirghaffari , N. ( 2019 ). Photocatalytic removal of SO 2 using natural zeolite modified by TiO 2 and polyoxypropylene surfactant . Environmental Science and Pollution Research 26 ( 17 ): 16877 – 16886 .
- Wang , H. , Liu , H. , Chen , Z. et al. ( 2020 ). Interaction between SO 2 and NO in their adsorption and photocatalytic conversion on TiO 2 . Chemosphere 249 : 126136 .
- Xia , D. , Hu , L. , He , C. et al. ( 2015 ). Simultaneous photocatalytic elimination of gaseous NO and SO 2 in a BiOI/Al 2 O 3 -padded trickling scrubber under visible light . Chemical Engineering Journal 279 : 929 – 938 .
- Shang , H. , Li , M. , Li , H. et al. ( 2019 ). Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO 2 via simultaneous molecular oxygen activation and photogenerated hole annihilation . Environmental Science & Technology 53 ( 11 ): 6444 – 6453 .
- Bolashikov , Z.D. and Melikov , A.K. ( 2009 ). Methods for air cleaning and protection of building occupants from airborne pathogens . Building and Environment 44 ( 7 ): 1378 – 1385 .
- Zhao , J. and Yang , X. ( 2003 ). Photocatalytic oxidation for indoor air purification: a literature review . Building and Environment 38 ( 5 ): 645 – 654 .
- Zhong , L. and Haghighat , F. ( 2015 ). Photocatalytic air cleaners and materials technologies – abilities and limitations . Building and Environment 91 : 191 – 203 .
- Fujishima , A. , Zhang , X. , and Tryk , D.A. ( 2008 ). TiO 2 photocatalysis and related surface phenomena . Surface Science Reports 63 ( 12 ): 515 – 582 .
- Nakata , K. and Fujishima , A. ( 2012 ). TiO 2 photocatalysis: design and applications . Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 ( 3 ): 169 – 189 .
- Weon , S. , He , F. , and Choi , W. ( 2019 ). Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation . Environmental Science Nano 6 ( 11 ): 3185 – 3214 .
- Tsang , C.H.A. , Li , K. , Zeng , Y. et al. ( 2019 ). Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast . Environment International 125 : 200 – 228 .
- Liu , G. , Yu , J.C. , Lu , G.Q. , and Cheng , H.M. ( 2011 ). Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties . Chemical Communications 47 ( 24 ): 6763 – 6783 .
-
Birnie , M.
,
Riffat , S.
, and
Gillott , M.
(
2006
).
Photocatalytic reactors: design for effective air purification
.
International Journal of Low-Carbon Technologies
1
(
1
):
47
–
58
.
10.1093/ijlct/1.1.47 Google Scholar
- Ângelo , J. , Andrade , L. , Madeira , L.M. , and Mendes , A. ( 2013 ). An overview of photocatalysis phenomen a applied to NO x abatement . Journal of Environmental Management 129 : 522 – 539 .
- Hoffmann , M.R. , Martin , S.T. , Choi , W.Y. , and Bahnemann , D.W. ( 1995 ). Environmental applications of semiconductor photocatalysis . Chemical Reviews 95 ( 1 ): 69 – 96 .
- Tachikawa , T. , Tojo , S. , Kawai , K. et al. ( 2004 ). Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO 2 powders studied by time-resolved diffuse reflectance spectroscopy . Journal of Physical Chemistry B 108 ( 50 ): 19299 – 19306 .
- Lasek , J. , Yu , Y.H. , and Wu , J.C.S. ( 2013 ). Removal of NO x by photocatalytic processes . Journal of Photochemistry and Photobiology C: Photochemistry Reviews 14 ( 1 ): 29 – 52 .
- Vohra , A. , Goswami , D.Y. , Deshpande , D.A. , and Block , S.S. ( 2006 ). Enhanced photocatalytic disinfection of indoor air . Applied Catalysis B: Environmental 64 ( 1, 2 ): 57 – 65 .
- Yu , B. , Leung , K.M. , Guo , Q. et al. ( 2011 ). Synthesis of Ag–TiO 2 composite nano thin film for antimicrobial application . Nanotechnology 22 ( 11 ): 115603 .
- Pham , T.D. and Lee , B.K. ( 2014 ). Effects of Ag doping on the photocatalytic disinfection of E. coli in bioaerosol by Ag–TiO 2 /GF under visible light . Journal of Colloid and Interface Science 428 : 24 – 31 .
- Pham , T.D. and Lee , B.K. ( 2014 ). Cu doped TiO 2 /GF for photocatalytic disinfection of Escherichia coli in bioaerosols under visible light irradiation: application and mechanism . Applied Surface Science 296 : 15 – 23 .
- Mills , A. , Hill , C. , and Robertson , P.K.J. ( 2012 ). Overview of the current ISO tests for photocatalytic materials . Journal of Photochemistry and Photobiology A: Chemistry 237 : 7 – 23 .
- Patil , S.B. , Basavarajappa , P.S. , Ganganagappa , N. et al. ( 2019 ). Recent advances in non-metals-doped TiO 2 nanostructured photocatalysts for visible-light driven hydrogen production, CO 2 reduction and air purification . International Journal of Hydrogen Energy 44 ( 26 ): 13022 – 13039 .
- Nasr-Esfahani , M. and Fekri , S. ( 2012 ). Alumina/TiO 2 /hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air . Reaction Kinetics, Mechanisms and Catalysis 107 ( 1 ): 89 – 103 .
- Wang , W. , Tadé , M.O. , and Shao , Z. ( 2015 ). Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment . Chemical Society Reviews 44 ( 15 ): 5371 – 5408 .
- Wang , L. , Xu , X. , Wang , Y. et al. ( 2018 ). Sulfur vacancy-rich CdS loaded on filter paper-derived 3D nitrogen-doped mesoporous carbon carrier for photocatalytic VOC removal . Inorganic Chemistry Frontiers 5 ( 6 ): 1470 – 1476 .
- Dundar , I. , Krichevskaya , M. , Katerski , A. et al. ( 2019 ). Photocatalytic degradation of different VOCs in the gas-phase over TiO 2 thin films prepared by ultrasonic spray pyrolysis . Catalysts 9 ( 11 ): 915 .
- He , F. , Muliane , U. , Weon , S. , and Choi , W. ( 2020 ). Substrate-specific mineralization and deactivat ion behaviors of TiO 2 as an air-cleaning photocatalyst . Applied Catalysis B: Environmental 275 : 119145 .
- Shen , X. , Dong , G. , Wang , L. et al. ( 2019 ). Enhancing photocatalytic activity of NO removal through an in situ control of oxygen vacancies in growth of TiO 2 . Advanced Materials Interfaces 6 ( 19 ): 1901032 .
- Wang , L. , Zhao , Y. , and Zhang , J. ( 2017 ). Photochemical removal of SO 2 over TiO 2 -based nanofibers by a dry photocatalytic oxidation process . Energy and Fuels 31 ( 9 ): 9905 – 9914 .
- Yamazaki , S. , Kozasa , K. , Okimura , K. , and Honda , K. ( 2020 ). Visible light responsive TiO 2 photocatalysts for degradation of indoor acetaldehyde . RSC Advances 10 ( 68 ): 41393 – 41402 .
- Li , D. , Haneda , H. , Hishita , S. , and Ohashi , N. ( 2005 ). Visible-light-driven N–F-codoped TiO 2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification . Chemistry of Materials 17 ( 10 ): 2596 – 2602 .
- Kowsari , E. and Bazri , B. ( 2014 ). Synthesis of rose-like ZnO hierarchical nanostructures in the presence of ionic liquid/Mg 2+ for air purification and their shape-dependent photodegradation of SO 2 , NO x , and CO . Applied Catalysis A: General 475 : 325 – 334 .
- Pastor , A. , Balbuena , J. , Cruz-Yusta , M. et al. ( 2019 ). ZnO on rice husk: a sustainable photocatalyst for urban air purification . Chemical Engineering Journal 368 : 659 – 667 .
- Shang , H. , Huang , S. , Li , H. et al. ( 2020 ). Dual-site activation enhanced photocatalytic removal of no with Au/CeO 2 . Chemical Engineering Journal 386 : 124047 .
- Luévano-Hipólito , E. , Martínez-De La Cruz , A. , Yu , Q.L. , and Brouwers , H.J.H. ( 2014 ). Precipitation synthesis of WO 3 for NO x removal using PEG as template . Ceramics International 40 ( 8 Part A ): 12123 – 12128 .
- Mendoza , J.A. , Lee , D.H. , Kim , L.H. et al. ( 2018 ). Photocatalytic performance of TiO 2 and WO 3 /TiO 2 nanoparticles coated on urban green infrastructure materials in removing nitrogen oxide . International Journal of Environmental Science and Technology 15 ( 3 ): 581 – 592 .
- Balbuena , J. , Cruz-Yusta , M. , Cuevas , A.L. et al. ( 2016 ). Enhanced activity of α-Fe 2 O 3 for photocatalytic NO removal . RSC Advances 6 ( 95 ): 92917 – 92922 .
- Yang , J. , Li , D. , Zhang , Z. et al. ( 2000 ). A study of the photocatalytic oxidation of formaldehyde on Pt/Fe 2 O 3 /TiO 2 . Journal of Photochemistry and Photobiology A: Chemistry 137 ( 2, 3 ): 197 – 202 .
- Ai , Z. and Lee , S. ( 2013 ). Morphology-dependent photocatalytic removal of NO by hierarchical BiVO 4 microboats and microspheres under visible light . Applied Surface Science 280 : 354 – 359 .
- Ai , Z. , Huang , Y. , Lee , S. , and Zhang , L. ( 2011 ). Monoclinic α-Bi 2 O 3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation . Journal of Alloys and Compounds 509 ( 5 ): 2044 – 2049 .
- Cai , S. , Yu , S. , Wan , W. et al. ( 2017 ). Self-template synthesis of ATiO 3 (A = Ba, Pb and Sr) perovskites for photocatalytic removal of NO . RSC Advances 7 ( 44 ): 27397 – 27404 .
- Li , H. , Yin , S. , Wang , Y. et al. ( 2013 ). Roles of Cr 3+ doping and oxygen vacancies in SrTiO 3 photocatalysts with high visible light activity for NO removal . Journal of Catalysis 297 : 65 – 69 .
- Kako , T. and Ye , J. ( 2005 ). Photocatalytic decomposition of acetaldehyde over rubidium bismuth niobates under visible light irradiation . Materials Transactions 46 ( 12 ): 2694 – 2698 .
- Ji , W. , Shen , T. , Kong , J. et al. ( 2018 ). Synergistic performance between visible-light photocatalysis and thermocatalysis for VOCs oxidation over robust Ag/F-codoped SrTiO 3 . Industrial and Engineering Chemistry Research 57 ( 38 ): 12766 – 12773 .
- Wang , Y. , Xu , X. , Lu , W. et al. ( 2018 ). A sulfur vacancy rich CdS based composite photocatalyst with g-C 3 N 4 as a matrix derived from a Cd–S cluster assembled supramolecular network for H 2 production and VOC removal . Dalton Transactions 47 ( 12 ): 4219 – 4227 .
- Luo , J. , Dong , G. , Zhu , Y. et al. ( 2017 ). Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C 3 N 4 . Applied Catalysis B: Environmental 214 : 46 – 56 .
- Zhang , W. , Zhang , J. , Dong , F. , and Zhang , Y. ( 2016 ). Facile synthesis of: in situ phosphorus-doped g-C 3 N 4 with enhanced visible light photocatalytic property for NO purification . RSC Advances 6 ( 91 ): 88085 – 88089 .
- Channei , D. , Inceesungvorn , B. , Wetchakun , N. et al. ( 2014 ). Photocatalytic degradation of methyl orange by CeO 2 and Fe-doped CeO 2 films under visible light irradiation . Scientific Reports 4 ( 1 ): 1 – 7 .
- Fan , H. , Jiang , T. , Li , H. et al. ( 2012 ). Effect of BiVO 4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity . Journal of Physical Chemistry C 116 ( 3 ): 2425 – 2430 .
- Huang , Z.F. , Pan , L. , Zou , J.J. et al. ( 2014 ). Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress . Nanoscale 6 ( 23 ): 14044 – 14063 .
- Nunes , B.N. , Haisch , C. , Emeline , A.V. et al. ( 2019 ). Photocatalytic properties of layer-by-layer thin films of hexaniobate nanoscrolls . Catalysis Today 326 : 60 – 67 .
- Ahmad , H. , Kamarudin , S.K. , Minggu , L.J. , and Kassim , M. ( 2015 ). Hydrogen from photo-catalytic water splitting process: a review . Renewable and Sustainable Energy Reviews 43 : 599 – 610 .
- Liao , J. , Cui , W. , Li , J. et al. ( 2020 ). Nitrogen defect structure and NO + intermediate promoted photocatalytic NO removal on H 2 treated g-C 3 N 4 . Chemical Engineering Journal 379 : 122282 .
- Patnaik , S. , Sahoo , D.P. , and Parida , K. ( 2021 ). Recent advances in anion doped g-C 3 N 4 photocatalysts: a review . Carbon 172 : 682 – 711 .
- Nowotny , J. , Bak , T. , Nowotny , M.K. , and Sheppard , L.R. ( 2006 ). TiO 2 surface active sites for water splitting . Journal of Physical Chemistry B 110 ( 37 ): 18492 – 18495 .
- Komarneni , S. and Katsuki , H. ( 2002 ). Nanophase materials by a novel microwave-hydroth ermal process . Pure and Applied Chemistry 74 ( 9 ): 1537 – 1543 .
- Van Tuan , P. , Hieu , L.T. , Tan , V.T. et al. ( 2019 ). The dependence of morphology, structure, and photocatalytic activity of SnO 2 /rGO nanocomposites on hydrothermal temperature . Materials Research Express 6 ( 10 ): 106204 .
- Alphas Jebasingh , J. , Stanley , R. , and Manisha Vidyavathy , S. ( 2020 ). Sol–gel preparation of surfactants assisted titania for solar photocatalysis . Materials Letters 279 : 128460 .
- Marinho , J.Z. , Santos , L.M. , Macario , L.R. et al. ( 2015 ). Rapid preparation of (BiO) 2 CO 3 nanosheets by microwave-assisted hydrothermal method with promising photocatalytic activity under UV–vis light . Journal of the Brazilian Chemical Society 26 : 498 – 505 .
- Sun , Q. , Tian , T. , Zheng , L. et al. ( 2019 ). Electronic active defects and local order in doped ZnO ceramics inferred from EPR and 27 Al NMR investigations . Journal of the European Ceramic Society 39 ( 10 ): 3070 – 3076 .
- Turkten , N. , Cinar , Z. , Tomruk , A. , and Bekbolet , M. ( 2019 ). Copper-doped TiO 2 photocatalysts: application to drinking water by humic matter degradation . Environmental Science and Pollution Research 26 ( 36 ): 36096 – 36106 .
- Ahmad , I. , Ahmed , E. , Ahmad , M. et al. ( 2020 ). The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination . Materials Science in Semiconductor Processing 105 : 104748 .
- Hanaor , D.A.H. and Sorrell , C.C. ( 2011 ). Review of the anatase to rutile phase transformation . Journal of Materials Science 46 ( 4 ): 855 – 874 .
- McCluskey , M.D. and Jokela , S.J. ( 2009 ). Defects in ZnO . Journal of Applied Physics 106 ( 7 ): 1 – 13 .
- Chen , W.F. , Chen , H. , Koshy , P. et al. ( 2018 ). Effect of doping on the properties and photocatalytic performance of titania thin films on glass substrates: single-ion doping with cobalt or molybdenum . Materials Chemistry and Physics 205 : 334 – 346 .
- Ismael , M. ( 2019 ). Highly effective ruthenium-doped TiO 2 nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production . New Journal of Chemistry 43 ( 24 ): 9596 – 9605 .
- Bantawal , H. , Shenoy , U.S. , and Bhat , D.K. ( 2020 ). Vanadium-doped SrTiO 3 nanocubes: insight into role of vanadium in improving the photocatalytic activity . Applied Surface Science 513 : 1 – 7 .
- Chang , C.W. and Hu , C. ( 2020 ). Graphene oxide-derived carbon-doped SrTiO 3 for highly efficient photocatalytic degradation of organic pollutants under visible light irradiation . Chemical Engineering Journal 383 : 123116 .
- Hu , Y. , Zhao , G. , Pan , Q. et al. ( 2019 ). Highly selective anaerobic oxidation of alcohols over Fe-doped SrTiO 3 under visible light . ChemCatChem 11 ( 20 ): 5139 – 5144 .
- Dong , P. , Hou , G. , Xi , X. et al. ( 2017 ). WO 3 -based photocatalysts: morphology control, activity enhancement and multifunctional applications . Environmental Science Nano 4 ( 3 ): 539 – 557 .
- Wang , Y. , Wang , Q. , Zhan , X. et al. ( 2013 ). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review . Nanoscale 5 ( 18 ): 8326 – 8339 .
- Huang , Y. , Zhang , J. , Wang , Z. et al. ( 2020 ). g-C 3 N 4 /TiO 2 composite film in the fabrication of a photocatalytic air-purifying pavements . Solar RRL 4 ( 8 ): 2000170 .
- Spasiano , D. , Marotta , R. , Malato , S. et al. ( 2015 ). Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach . Applied Catalysis B: Environmental 170, 171 : 90 – 123 .
- Pilkington Activ™ Range . A versatile range of glass which offers multiple benefits . https://www.pilkington.com/en/global/products/product-categories/self-cleaning/pilkington-activ-range (accessed 26 February 2021).
- SGG BIOCLEAN® | Saint-Gobain Façade . Bioclean . https://www.saint-gobain-facade-glass.com/products/sgg-bioclean%C2%AE (accessed 26 February 2021).
- HYDROTECT | TOTO . Hydrotect . https://jp.toto.com/products/hydro/en (accessed 26 February 2021).
- Hüsken , G. , Hunger , M. , and Brouwers , H.J.H. ( 2009 ). Experimental study of photocatalytic concrete products for air purification . Building and Environment 44 ( 12 ): 2463 – 2474 .
- Sieland , F. , Duong , N.A.T. , Schneider , J. , and Bahnemann , D.W. ( 2018 ). Influence of inorganic additives on the photocatalytic removal of nitric oxide and on the charge carrier dynamics of TiO 2 powders . Journal of Photochemistry and Photobiology A: Chemistry 366 : 142 – 151 .