Nanofibers for Environmental Remediation
Daniel Pasquini
Federal University of Uberlândia, Institute of Chemistry, Av. João Naves de Ávila, 2121, Campus Santa Mônica, Bloco 1D, Uberlândia, Minas Gerais, 38400-902 Brazil
Search for more papers by this authorLuís C. de Morais
Federal University of the Triângulo Mineiro, Institute of Exact, Sciences, Natural and Education, Randolfo Borges Júnior Av., 1400, Univerdecidade, Uberaba, Minas Gerais, 38064-200 Brazil
Search for more papers by this authorPedro E. Costa
Federal University of the Triângulo Mineiro, Institute of Exact, Sciences, Natural and Education, Randolfo Borges Júnior Av., 1400, Univerdecidade, Uberaba, Minas Gerais, 38064-200 Brazil
Search for more papers by this authorDaniel Pasquini
Federal University of Uberlândia, Institute of Chemistry, Av. João Naves de Ávila, 2121, Campus Santa Mônica, Bloco 1D, Uberlândia, Minas Gerais, 38400-902 Brazil
Search for more papers by this authorLuís C. de Morais
Federal University of the Triângulo Mineiro, Institute of Exact, Sciences, Natural and Education, Randolfo Borges Júnior Av., 1400, Univerdecidade, Uberaba, Minas Gerais, 38064-200 Brazil
Search for more papers by this authorPedro E. Costa
Federal University of the Triângulo Mineiro, Institute of Exact, Sciences, Natural and Education, Randolfo Borges Júnior Av., 1400, Univerdecidade, Uberaba, Minas Gerais, 38064-200 Brazil
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
Quality water is becoming scarce, and decontamination methods are often costly. However, there is the possibility of using waste from agro-industrial activities to develop materials with high potential for application and water purification. Among the components present in these residues, cellulose and, more specifically, cellulose nanofibers have been highlighted. Under these conditions, cellulose exhibits a high surface area, good chemical reactivity, high mechanical strength, and allows the production of a high number of by-products obtained by different chemical reactions. That, at the end of it, provides applications in water decontamination. From this perspective, this chapter provides specific information about cellulose nanofibers, exploring aspects of the different treatments that allow them to be obtained. Of the main chemical reactions that have been used to produce materials with decontamination potential for the metal cation lead(II) and dyes. For this, works from the literature were used aiming exclusively to understand some aspects that help to highlight which variables help to better enhance the process of removal of these mentioned contaminants.
References
-
Heinze , T.
(
2015
).
Cellulose: structure and properties
. In:
Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials
,
Advances in Polymer Science
, vol.
271
(ed.
O. Rojas
).
Cham
:
Springer
.
https://doi.org/10.1007/12_2015_319
.
10.1007/12_2015_319 Google Scholar
- Fengel , D. and Wegener , G. ( 1984 ). Wood, Chemistry, Ultrastructure: Reactions (ed. D. Fengel and G. Wegener ). Berlin/New York : W. de Gruyter : 613 pp.
- El Seoud , O.A. , Fidale , L.C. , Ruiz , N. et al. ( 2008 ). Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15 : 371 – 392 . https://doi.org/10.1007/s10570-007-9189-x .
- Bialik , E. , Stenqvist , B. , Fang , Y. et al. ( 2016 ). Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution . Journal of Physical Chemistry Letters 7 : 5044 – 5048 . https://doi.org/10.1021/acs.jpclett.6b02346 .
- Dufresne , A. ( 2013 ). Nanoce llulose: From Nature to High Performance Tailored Materials . Berlin/Boston : Walter de Gruyter GmbH : 624 pp.
- Moon , R.J. , Martini , A. , Nairn , J. et al. ( 2011 ). Cellulose nanomaterials review: structure, properties and nanocomposites . Chemical Society Reviews 40 : 3941 – 3994 . https://doi.org/10.1039/C0CS00108B .
- TAPPI ( 2011 ). Workshop on International Standards for Nanocellulose , Arlington, USA (9 June 2011).
- Kaushik , M. and Moores , A. ( 2016 ). Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis . Green Chemistry 18 : 622 – 637 . https://doi.org/10.1039/c5gc02500a .
- Kassab , Z. , Abdellaoui , Y. , Salim , M.H. , and El Achaby , M. ( 2020 ). Cellulosic materials from pea ( Pisum sativum ) and broad beans ( Vicia faba ) pods agro-industrial residues . Materials Letters 280 : 128539 . https://doi.org/10.1016/j.matlet.2020.128539 .
- Kassab , Z. , Kassem , I. , Hannache , H. et al. ( 2020 ). Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities . Cellulose 27 : 4287 – 4303 . https://doi.org/10.1007/s10570-020-03097-7 .
- Belgacem , M.N. and Gandini , A. ( 2008 ). Monomers, Polymers and Composites from Renewable Resources . Oxford : Elsevier .
- Eyley , S. and Thielemans , W. ( 2014 ). Surface modification of cellulose nanocrystals . Nanoscale 6 : 7764 – 7779 . https://doi.org/10.1039/c4nr01756k .
- Bismarck , A. , Aranberri-Askargorta , I. , and Springer , J. ( 2002 ). Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior . Polymer Composites 23 ( 5 ): 872 – 894 . https://doi.org/10.1002/pc.10485 .
- Lu , P. and Hsieh , Y. ( 2010 ). Preparation and properties of cellulose nanocrystals: rods, spheres, and network . Carbohydrate Polymers 82 : 329 – 336 . https://doi.org/10.1016/j.carbpol.2010.04.073 .
- Dufresne , A. ( 2000 ). Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites . Composite Interfaces 7 : 53 – 67 . https://doi.org/10.1163/156855400300183588 .
- Siqueira , G. , Bras , J. , and Dufresne , A. ( 2010 ). New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate . Langmuir 26 : 402 – 411 . https://doi.org/10.1021/la9028595 .
- Pääkkö , M. , Vapaavuori , J. , Silvennoinen , R. et al. ( 2008 ). Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities . Soft Matter 4 : 2492 – 2499 . https://doi.org/10.1039/B810371B .
- Spence , K. , Venditti , R. , Habibi , Y. et al. ( 2010 ). The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties . Bioresource Technology 101 : 5961 – 5968 . https://doi.org/10.1016/j.biortech.2010.02.104 .
- Moser , C. , Henriksson , G. , an d Lindström , M.E. ( 2016 ). Specific surface area increase during cellulose nanofiber manufacturing related to energy input . BioResources 11 ( 3 ): 7124 – 7132 . https://doi.org/10.15376/biores.11.3.7124-7132 .
- Zhang , Y. , Tiina , N. , Salas , C. et al. ( 2013 ). Cellulose nanofibrils: from strong materials to bioactive surfaces . Journal of Renewable Materials 1 ( 3 ): 195 – 211 . https://doi.org/10.7569/JRM.2013.634115 .
- Sehaqui , H. , Zhou , Q. , Ikkala , O. , and Berglund , L.A. ( 2011 ). Strong and tough cellulose nanopaper with high specific surface area and porosity . Biomacromolecules 12 : 3638 – 3644 . https://doi.org/10.1021/bm2008907 .
- Henriksson , M. , Berglund , L.A. , Isaksson , P. et al. ( 2008 ). Cellulose nanopaper structures of high toughness . Biomacromolecules 9 : 1579 – 1585 . https://doi.org/10.1021/bm800038n .
- Paakko , M. , Ankerfors , M. , Kosonen , H. et al. ( 2007 ). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels . Biomacromolecules 8 : 1934 – 1941 . https://doi.org/10.1021/bm061215p .
- Kalia , S. , Boufi , S. , Celli , A. , and Kango , S. ( 2014 ). Nanofibrillated cellulose: surface modification and potential applications . Colloid and Polymer Science 292 : 5 – 31 . https://doi.org/10.1007/s00396-013-3112-9 .
- Heinze , T. , Liebert , T. , and Koschella , A. ( 2006 ). Esterification of Polysaccharides , 232 . Berlin/Heidelberg/New York : Springer-Verlag .
- Zhang , J. , Chen , W. , Feng , Y. et al. ( 2018 ). Homogeneous esterification of cellulose in room temperature ionic liquids . Cellulose 25 : 3703 – 3731 . https://doi.org/10.1002/pi.4883 .
- Hasani , M. , Westman , G. , Potthast , A. , and Rosenau , T. ( 2009 ). Cationization of cellulose by using N -oxiranylmethyl- N -methylmorpholinium chloride and 2-oxiranylpyridine as etherification agents . Journal of Applied Polymer Science 114 ( 3 ): 1449 – 1456 . https://doi.org/10.1002/app .
- Saini , S. , Falco , C.Y. , Belgacem , M.N. , and Bras , J. ( 2015 ). Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces . Carbohydrate Polymers 135 : 239 – 247 . https://doi.org/10.1016/j.carbpol.2015.09.002 .
- Goussé , C. , Chanzy , H. , Excoffier , G. et al. ( 2002 ). Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents . Polymer 43 ( 9 ): 2645 – 2651 . https://doi.org/10.1016/S0032-3861(02)00051-4 .
- Kricheldorf , H.R. ( 1996 ). Silicon in Polymer Synthesis (With Contributions by Burger, C., Hertler, W.R., Kochs, P., Kreuzer, F.H., Kricheldorf, H.R., Miilhaupt, R.), 506 . Berlin/Heidelberg/New York/Barcelona/Budapest/Hong Kong/London/Milan/Paris/Santa Clara/Singapore/Tokyo : Springer .
- Isogai , A. , Saito , T. , and Fukuzumi , H. ( 2011 ). TEMPO-oxidized cellulose nanofibers . Nanoscale 3 : 71 – 85 . https://doi.org/10.1039/C0NR00583E .
- Brodin , F.W. , Gregersen , Ø.W. , and Syverud , K. ( 2014 ). Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material – a review . Nordic Pulp & Paper Research Journal 29 ( 1 ): 154 – 166 . https://doi.org/10.3183/npprj-2014-29-01-p156-166 .
- IUPAC ( 1997 ). Compendium of Ch emical Terminology , 2 e. (the “Gold Book”). Compiled by McNaught, A.D. and Wilkinson, A. Oxford: Blackwell Scientific Publications. Online version (2019) created by Chalk, S.J. https://doi.org/10.1351/goldbook .
- Dufresne , A. ( 2010 ). Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals . Molecules 15 : 4111 – 4412 . https://doi.org/10.3390/molecules15064111 .
- Varghese , A.G. , Paul , S.A. , and Latha , M.S. ( 2019 ). Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents . Environmental Chemistry Letters 17 : 867 – 877 . https://doi.org/10.1007/s10311-018-00843-z .
- Najafi , M. and Frey , M.W. ( 2020 ). Electrospun nanofibers for chemical separation . Nanomaterials 10 : 982 . https://doi.org/10.3390/nano10050982 .
- Ranjbar , D. , Raeiszadeh , M. , Lewis , L. et al. ( 2020 ). Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation . Cellulose 27 : 3211 – 3232 . https://doi.org/10.1007/s10570-020-03021-z .
- Abouzeid , R.E. , Khiari , R. , El-Wakil , N. , and Dufresne , A. ( 2019 ). Current state and new trends in the use of cellulose nanomaterials for wastewater treatment . Biomacromolecules 20 : 573 – 597 . https://doi.org/10.1021/acs.biomac.8b00839 .
- Gandavadi , D. , Sundarrajan , S. , and Ramakrishna , S. ( 2019 ). Bio-based nanofibers involved in wastewater treatment . Macromolecular Materials and Engineering 304 : 1900345 . https://doi.org/10.1002/mame.201900345 .
- Lombardo , S. and Thielemans , W. ( 2019 ). Thermodynamics of adsorption on nanocellulose surfaces . Cellulose 26 : 249 – 279 . https://doi.org/10.1007/s10570-018-02239-2 .
- Fauziyah , M. , Widiyastuti , W. , Balgis , R. , and Setyawan , H. ( 2019 ). Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications . Cellulose 26 : 9583 – 9598 . https://doi.org/10.1007/s10570-019-02753-x .
- Tan , K.B. , Reza , A.K. , Abdullah , A.Z. et al. ( 2018 ). Development of self-assembled nanocrystalline cellulose as a promising practical adsorbent for methylene blue removal . Carbohydrate Polymers 199 : 92 – 101 . https://doi.org/10.1016/j.carbpol.2018.07.006 .
- Liang , L. , Zhang , S. , Goenaga , G.A. et al. ( 2020 ). Chemically cross-linked cellulose nanocrystal aerogels for effective removal of cation dye . Frontiers in Chemistry 8 : 570 . https://doi.org/10.3389/fchem.2020.00570 .
- Lu , B. , Lin , Q. , Yin , Z. et al. ( 2021 ). Robust and lightweight biofoam based on cellulose nanofibrils for high-efficient methylene blue adsorption . Cellulose 28 : 273 – 288 . https://doi.org/10.1007/s10570-020-03553-4 .
- El Achaby , M. , Fayoud , N. , Figueroa-Espinoza , M.C. et al. ( 2018 ). New highly hydrated cellulose microfibrils with a tendril helical morphology extracted from agrowaste material: application to removal of dyes from waste water . RSC Advances 8 : 5212 – 5224 . https://doi.org/10.1039/c7ra10239a .
- Salahuddin , N. , Abdelwahab , M.A. , Akelah , A. , and Elnagar , M. ( 2021 ). Adsorption of Congo red and crystal violet dyes onto cellulose extracted from Egyptian water hyacinth . Natural Hazards 105 : 1375 – 1394 . https://doi.org/10.1007/s11069-020-04358 -1.
- Jin , L. , Li , W. , Xu , Q. , and Sun , Q. ( 2015 ). Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes . Cellulose 22 : 2443 – 2456 . https://doi.org/10.1007/s10570-015-0649-4 .
- Pei , A. , Butchosa , N. , Berglund , L.A. , and Zhou , Q. ( 2013 ). Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes . Soft Matter 9 : 2047 . https://doi.org/10.1039/C2SM27344F .
- Chen , Y. , Long , Y. , Li , Q. et al. ( 2019 ). Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb(II) . International Journal of Biological Macromolecules 126 : 107 – 117 . https://doi.org/10.1016/j.ijbiomac.2018.12.119 .
- Maleš , L. , Fakin , D. , Bracic , M. , and Gorgieva , S. ( 2020 ). Eciency of dierently processed membranes based on cellulose as cationic dye adsorbents . Nanomaterials 10 : 642 . https://doi.org/10.3390/nano10040642 .
- Riva , L. , Pastori , N. , Panozzo , A. et al. ( 2020 ). Nanostructured cellulose-based sorbent materials for water decontamination from organic dyes . Nanomaterials 10 : 1570 . https://doi.org/10.3390/nano10081570 .
- Ponce , S. , Chavarria , M. , Norabuena , F. et al. ( 2020 ). Cellulose microfibres obtained from agro-industrial tara waste for dye adsorption in water . Water, Air, and Soil Pollution 231 : 518 . https://doi.org/10.1007/s11270-020-04889-0 .
- Sergeev , V.I. , Shimko , T.G. , Kuleshova , M.L. , and Maximovich , N.G. ( 1996 ). Groundwater protection against pollution by heavy metals at waste disposal sites . Water Science and Technology 34 : 383 – 387 . https://doi.org/10.2166/wst.1996.0645 .
-
Abdel-Raouf , M.S.
and
Abdul-Raheim , A.R.M.
(
2017
).
Removal of heavy metals from industrial waste water by biomass-based materials: a review
.
Journal of Pollution Effects & Control
5
:
180
.
https://doi.org/10.4172/2375-4397.1000180
.
10.4172/2375‐4397.1000180 Google Scholar
- Zurbrick , C.M. , Gallon , C. , and Flegal , A.R. ( 2017 ). Historic and industrial lead within the Northwest Pacific ocean evidenced by lead isotopes in seawater . Environmental Science and Technology 51 ( 3 ): 1203 – 1212 . https://doi.org/10.1021/acs.est.6b04666 .
- Cardenas , A. , Roels , H. , Bernard , A.M. et al. ( 1993 ). Markers of early renal changes induced by industrial pollutants: II, Application to worker exposed to lead . British Journal of Industrial Medicine 50 : 28 – 36 . https://doi.org/10.1136/oem.50.1.28 .
- Haynes , W.M. and Lide , D.R. ( 2010 ). CRC Handbook of Chemistry and Physics . New York : CRC Press/Taylor & Francis Group .
- Musyoka , S. , Ngila , C. , Moodley , B. et al. ( 2011 ). Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption . Journal of Hazardous Materials 192 ( 2 ): 922 – 927 . https://doi.org/10.1016/j.jhazmat.2011.06.001 .
- Yu , X. , Tong , S. , Ge , M. et al. ( 2013 ). Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals . Journal of Environmental Sciences 25 ( 5 ): 933 – 943 . https://doi.org/10.1016/S1001-0742(12)60145-4 .
- Kardam , A. , Raj , K.R. , Srivas tava , S. , and Srivastava , M.M. ( 2014 ). Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution . Clean Technologies and Environmental Policy 16 : 385 – 393 . https://doi.org/10.1007/s10098-013-0634-2 .
- Suopajärvi , T. , Liimatainen , H. , Karjalainen , M. et al. ( 2015 ). Lead adsorption with sulfonated wheat pulp nanocelluloses . Journal of Water Process Engineering 5 : 136 – 142 . https://doi.org/10.1016/j.jwpe.2014.06.003 .
- Yao , C. , Wang , F. , Cai , Z. , and Wang , X. ( 2015 ). Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions . Journal of Water Process Engineering 5 : 136 – 142 . https://doi.org/10.1016/j.jwpe.2014.06.003 .
- Agaba , A. , Cheng , H. , Zhao , J. et al. ( 2018 ). Precipitated silica agglomerates reinforced with cellulose nanofibrils as adsorbents for heavy metals . RSC Advances 8 : 33129 – 33137 . https://doi.org/10.1039/c8ra05611k .
- Li , J. , Zuo , K. , Wu , W. et al. ( 2018 ). Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II) . Carbohydrate Polymers 196 ( 15 ): 376 – 384 . https://doi.org/10.1016/j.carbpol.2018.05.015 .
- Tian , C. , She , J. , Wu , Y. et al. ( 2018 ). Reusable and cross-linked cellulose nanofibrils aerogel for the removal of heavy metal ions . Polymer Composites 39 ( 12 ): 4442 – 4451 . https://doi.org/10.1002/pc.24536 .
- Li , Y. , Guo , C. , Shia , R. et al. ( 2019 ). Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb(II) ions from aqueous solution . Carbohydrate Polymers 223 : 115048 . https://doi.org/10.1016/j.carbpol.2019.115048 .
- Septevani , A.A. , Rifathin , A. , Sari , A.A. et al. ( 2020 ). Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation . Carbohydrate Polymers 229 : 115433 . https://doi.org/10.1016/j.carbpol.2019.115433 .
- Ramos-Vargas , S. , Huirache-Acuña , R. , Rutiaga-Quiñones , J.G. , and Cortés-Martínez , R. ( 2020 ). Effective lead removal from aqueous solutions using cellulose nanofibers obtained from water hyacinth . Water Supply 20 ( 7 ): 2715 – 2736 . https://doi.org/10.2166/ws.2020.173 .
- Xu , X. , Ouyang , X. , and Yang , L. ( 2021 ). Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel bead . Journal of Molecular Liquids 322 : 114523 . https://doi.org/10.1016/j.molliq.2020.114523 .