Functionalized Nanoparticles for Environmental Remediation
Beatriz Jurado-Sánchez
Universidad de Alcala, Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Alcala de Henares, Madrid, E-28871 Spain
Search for more papers by this authorBeatriz Jurado-Sánchez
Universidad de Alcala, Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Alcala de Henares, Madrid, E-28871 Spain
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
In this chapter, recent advances on the use of functionalized nanoparticles-based strategies for nanoadsorption, nanofiltration, photocatalytic degradation, and chemical degradation are described.
References
- Triassi , M. , Alfano , R. , Illario , M. et al. ( 2015 ). Environmental pollution from illegal waste disposal and health effects: a review on the “triangle of death” . International Journal of Environmental Research and Public Health 12 ( 2 ): 1216 – 1236 .
- Ni , H.-G. , Zeng , H. , and Zeng , E.Y. ( 2011 ). Sampling and analytical framework for routine environmental monitoring of organic pollutants . TrAC Trends in Analytical Chemistry 30 ( 10 ): 1549 – 1559 .
- Khin , M.M. , Nair , A.S. , Babu , V.J. et al. ( 2012 ). A review on nanomaterials for environmental remediation . Energy & Environmental Science 5 ( 8 ): 8075 – 8109 .
- Unni , M. , Uhl , A.M. , Savliwala , S. et al. ( 2017 ). Thermal decomposition synthesis of iron o xide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen . ACS Nano 11 ( 2 ): 2284 – 2303 .
- Kemp , M.M. , Kumar , A. , Mousa , S. et al. ( 2009 ). Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities . Biomacromolecules 10 ( 3 ): 589 – 595 .
- Lomelí-Rosales , D.A. , Zamudio-Ojeda , A. , Cortes-Llamas , S.A. , and Velázquez-Juárez , G. ( 2019 ). One-step synthesis of gold and silver non-spherical nanoparticles mediated by Eosin Methylene Blue agar . Scientific Reports 9 ( 1 ): 19327 .
- Abhilash , M.R. , Gangadhar , A. , Krishnegowda , J. et al. ( 2019 ). Hydrothermal synthesis, characterization and enhanced photocatalytic activity and toxicity studies of a rhombohedral Fe 2 O 3 nanomaterial . RSC Advances 9 ( 43 ): 25158 – 25169 .
- Fiorati , A. , Bellingeri , A. , Punta , C. et al. ( 2020 ). Silver nanoparticles for water pollution monitoring and treatments: ecosafety challenge and cellulose-based hybrids solution . Polymers 12 ( 8 ): 1635 .
- Le Ouay , B. and Stellacci , F. ( 2015 ). Antibacterial activity of silver nanoparticles: a surface science insight . Nano Today 10 ( 3 ): 339 – 354 .
- Yan , X. , He , B. , Liu , L. et al. ( 2018 ). Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa : proteomics approach . Metallomics 10 ( 4 ): 557 – 564 .
- Perala , S.R.K. and Kumar , S. ( 2013 ). On the mechanism of metal nanoparticle synthesis in the Brust–Schiffrin method . Langmuir 29 ( 31 ): 9863 – 9873 .
- Abid , J.P. , Wark , A.W. , Brevet , P.F. , and Girault , H.H. ( 2002 ). Preparation of silver nanoparticles in solution from a silver salt by laser irradiation . Chemical Communications 7 : 792 – 793 .
- Ratnarathorn , N. , Chailapakul , O. , Henry , C.S. , and Dungchai , W. ( 2012 ). Simple silver nanoparticle colorimetric sensing for copper by paper-based devices . Talanta 99 : 552 – 557 .
- Mehenni , H. , Sinatra , L. , Mahfouz , R. et al. ( 2013 ). Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres . RSC Advances 3 ( 44 ): 22397 – 22403 .
- Zhou , S. , Li , J. , Gilroy , K.D. et al. ( 2016 ). Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution . ACS Nano 10 ( 11 ): 9861 – 9870 .
- Joseph , D. , Baskaran , R. , Yang , S.G. et al. ( 2019 ). Multifunctional spiky branched gold-silver nanostars with near-infrared and short-wavelength infrared localized surface plasmon resonances . Journal of Colloid and Interface Science 542 : 308 – 316 .
- Zhang , W. , Liu , J. , Niu , W. et al. ( 2018 ). Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering . ACS Applied Materials & Interfaces 10 ( 17 ): 14850 – 14856 .
- Perera , M. , Wijenayaka , L.A. , Siriwardana , K. et al. ( 2020 ). Gold nanoparticle decorated titania for sustainable environmental remediation: green synthesis, enhanced surface adsorption and synergistic photocatalysis . RSC Advances 10 ( 49 ): 29594 – 29602 .
- Jimenez-Ruiz , A. , Perez-Tejeda , P. , Grueso , E. et al. ( 2015 ). Nonfunctionalized gold nanoparticles: synthetic routes and synthesis condition dependence . Chemistry – A European Journal 21 ( 27 ): 9596 – 9609 .
- Fan , J. , Cheng , Y. , and Sun , M. ( 2020 ). Functionalized gold nanoparticles: synthesis, properties and biomedical applications . The Chemical Record 20 ( 12 ): 1474 – 1504 .
- Alsheheri , S.Z. ( 2021 ). Nanocomposites containing titanium dioxide for environmental remediation . Designed Monomers and Polymers 24 ( 1 ): 22 – 45 .
- Chen , X. and Mao , S.S. ( 2007 ). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications . Chemical Reviews 107 ( 7 ): 2891 – 2959 .
- Sugimoto , T. , Zhou , X. , and Muramatsu , A. ( 2002 ). Synthesis of uniform anatase TiO 2 nanoparticles by gel–sol method: 1. Solution chemistry of Ti(OH) n (4− n )+ complexes . Journal of Colloid and Interface Science 252 ( 2 ): 339 – 346 .
- Yang , S. and Gao , L. ( 2006 ). Fabrication and shape-evolution of nanostructured TiO 2 via a sol–solvothermal process based on benzene–water interfaces . Materials Chemistry and Physics 99 ( 2 ): 437 – 440 .
- Wu , J.-J. and Yu , C.-C. ( 2004 ). Aligned TiO 2 nanorods and nanowalls . Journal of Physical Chemistry B 108 ( 11 ): 3377 – 3379 .
- Park , D.G. and Burlitch , J.M. ( 1992 ). Nanoparticles of anatase by electrostatic spraying of an alkoxide solution . Chemistry of Materials 4 ( 3 ): 500 – 502 .
- Peng , X. and Chen , A. ( 2004 ). Aligned TiO 2 nanorod arrays synthesized by oxidizing titanium with acetone . Journal of Materials Chemistry 14 ( 16 ): 2542 – 2548 .
- Wu , J.-M. , Zhang , T.-W. , Zeng , Y.-W. et al. ( 2005 ). Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity . Langmuir 21 ( 15 ): 6995 – 7002 .
- Li , X.-q. and Zhang , W.-x. ( 2006 ). Iron nanoparticles: the core–shell structure and unique properties for Ni(II) sequestration . Langmuir 22 ( 10 ): 4638 – 4642 .
- Leonel , A.G. , Mansur , A.A.P. , and Mansur , H.S. ( 2021 ). Advanced functional nanostructures based on magnetic iron oxide nanomaterials for water remediation: a review . Water Research 190 : 116693 .
- Wu , W. , Xiao , X. , Zhang , S. et al. ( 2010 ). Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties . Journal of Physical Chemistry C 114 ( 39 ): 16092 – 16103 .
- Boxall , C. , Kelsall , G. , and Zhang , Z. ( 1996 ). Photoelectrophoresis of colloidal iron oxides. Part 2.—Magnetite (Fe 3 O 4 ) . Journal of the Chemical Society, Faraday Transactions 92 ( 5 ): 791 – 802 .
- Wu , W. , Wu , Z. , Yu , T. et al. ( 2015 ). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications . Science and Technology of Advanced Materials 16 ( 2 ): 023501 .
- Blanco-Andujar , C. , Ortega , D. , Pankh urst , Q.A. , and Thanh , N.T.K. ( 2012 ). Elucidating the morphological and structural evolution of iron oxide nanoparticles formed by sodium carbonate in aqueous medium . Journal of Materials Chemistry 22 ( 25 ): 12498 – 12506 .
- Ladj , R. , Bitar , A. , Eissa , M. et al. ( 2013 ). Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications . Journal of Materials Chemistry B 1 ( 10 ): 1381 – 1396 .
- Park , J. , An , K. , Hwang , Y. et al. ( 2004 ). Ultra-large-scale syntheses of monodisperse nanocrystals . Nature Materials 3 ( 12 ): 891 – 895 .
- Hongzhang , Q. , Biao , Y. , Wei , L. et al. ( 2011 ). A non-alkoxide sol–gel method for the preparation of magnetite (Fe 3 O 4 ) nanoparticles . Current Nanoscience 7 ( 3 ): 381 – 388 .
- Chen , Y. , Xia , H. , Lu , L. , and Xue , J. ( 2012 ). Synthesis of porous hollow Fe 3 O 4 beads and their applications in lithium ion batteries . Journal of Materials Chemistry 22 ( 11 ): 5006 – 5012 .
- Cai , W. and Wan , J. ( 2007 ). Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols . Journal of Colloid and Interface Science 305 ( 2 ): 366 – 370 .
- Zheng , X. , Cheng , H. , Yang , J. et al. ( 2018 ). One-pot solvothermal preparation of Fe 3 O 4 –urushiol–graphene hybrid nanocomposites for highly improved Fenton reactions . ACS Applied Nano Materials 1 ( 6 ): 2754 – 2762 .
- Verdugo , E.M. , Xie , Y. , Baltrusaitis , J. , and Cwiertny , D.M. ( 2016 ). Hematite decorated multi-walled carbon nanotubes (α-Fe 2 O 3 /MWCNTs) as sorbents for Cu(II) and Cr(VI): comparison of hybrid sorbent performance to its nanomaterial building blocks . RSC Advances 6 ( 102 ): 99997 – 100007 .
- Zikalala , N. , Matshetshe , K. , Parani , S. , and Oluwafemi , O.S. ( 2018 ). Biosynthesis protocols for colloidal metal oxide nanoparticles . Nano-Structures & Nano-Objects 16 : 288 – 299 .
- Liberman , A. , Mendez , N. , Trogler , W.C. , and Kummel , A.C. ( 2014 ). Synthesis and surface functionalization of silica nanoparticles for nanomedicine . Surface Science Reports 69 ( 2 ): 132 – 158 .
- Stöber , W. , Fink , A. , and Bohn , E. ( 1968 ). Controlled growth of monodisperse silica spheres in the micron size range . Journal of Colloid and Interface Science 26 ( 1 ): 62 – 69 .
- Singh , B. , Na , J. , Konarova , M. et al. ( 2020 ). Functional mesoporous silica nanomaterials for catalysis and environmental applications . Bulletin of the Chemical Society of Japan 93 ( 12 ): 1459 – 1496 .
- Son , W.-J. , Choi , J.-S. , and Ahn , W.-S. ( 2008 ). Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials . Microporous and Mesoporous Materials 113 ( 1 ): 31 – 40 .
- Xu , X. , Song , C. , Andrésen , J.M. et al. ( 2003 ). Preparation and characterization of novel CO 2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 . Microporous and Mesoporous Materials 62 ( 1 ): 29 – 45 .
- Tsai , C.-H. , Chang , W.-C. , Saikia , D. et al. ( 2016 ). Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes . Journal of Hazardous Materials 309 : 236 – 248 .
- Ng , L.Y. , Mohammad , A.W. , Leo , C.P. , and Hilal , N. ( 2013 ). Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review . Desalination 308 : 15 – 33 .
- Clancy , A.J. , Bayazit , M.K. , Hodge , S.A. et al. ( 2018 ). Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes . Chemical Reviews 118 ( 16 ): 7363 – 7408 .
- Mauter , M.S. and Elimelech , M. ( 2008 ). Environmental applications of carbon-based nanomaterials . Environmental Science and Technology 42 ( 16 ): 5843 – 5859 .
- Zhang , Y. , Tang , Z.-R. , Fu , X. , and Xu , Y.-J. ( 2010 ). TiO 2 –graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO 2 –graphene truly different from other TiO 2 –carbon composite materials? ACS Nano 4 ( 12 ): 7303 – 7314 .
- Dastgheib , S.A. and Rockstraw , D.A. ( 2001 ). Pecan shell activated carbon: synthesis, characterization, and application for the removal of copper from aqueous solution . Carbon 39 ( 12 ): 1849 – 1855 .
- Iijima , S. ( 1991 ). Helical microtubules of graphitic carbon . Nature 354 ( 6348 ): 56 – 58 .
- Eatemadi , A. , Daraee , H. , Karimkhanloo , H. et al. ( 2014 ). Carbon nanotubes: properties, synthesis, purification, and medical applications . Nanoscale Research Letters 9 ( 1 ): 393 .
- Novoselov , K.S. , Geim , A.K. , Morozov , S.V. et al. ( 2004 ). Electric field effect in atomically thin carbon films . Science 306 ( 5696 ): 666 – 669 .
- Ambrosi , A. , Chua , C.K. , Bonanni , A. , and Pumera , M. ( 2014 ). Electrochemistry of graphene and related materials . Chemical Reviews 114 ( 14 ): 7150 – 7188 .
- Cai , X. , Luo , Y. , Liu , B. , and Cheng , H.-M. ( 2018 ). Preparation of 2D material dispersions and their applications . Chemical Society Reviews 47 ( 16 ): 6224 – 6266 .
- Guan , G. and Han , M.-Y. ( 2019 ). Functionalized hybridization of 2D nanomaterials . Advanced Science 6 ( 23 ): 1901837 .
- Wang , B. , Sun , Y. , Ding , H. et al. ( 2020 ). Bioelectronics-related 2D materials beyond graphene: fundamentals, properties, and applications . Advanced Functional Materials 30 ( 46 ), 2003732.
- Safaei , M. , Foroughi , M.M. , Ebrahimpoor , N. et al. ( 2019 ). A review on metal–organic frameworks: synthesis and applications . TrAC Trends in Analytical Chemistry 118 : 401 – 425 .
- Zhou , H.C. , Long , J.R. , and Yaghi , O.M. ( 2012 ). Introduction to metal–organic frameworks . Chemical Reviews 112 ( 2 ): 673 – 674 .
- Ding , S.-Y. and Wang , W. ( 2013 ). Covalent organic frameworks (COFs): from design to applications . Chemical Society Reviews 42 ( 2 ): 548 – 568 .
- Naguib , M. , Mochalin , V.N. , Barsoum , M.W. , and Gogotsi , Y. ( 2014 ). 25th Anniversary article: MXenes: a new family of two-dimensional materials . Advanced Materials 26 ( 7 ): 992 – 1005 .
- Seh , Z.W. , Fredrickson , K.D. , Ana sori , B. et al. ( 2016 ). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution . ACS Energy Letters 1 ( 3 ): 589 – 594 .
- Magnuson , M. and Mattesini , M. ( 2017 ). Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory . Thin Solid Films 621 : 108 – 130 .
- Wang , H. and Pumera , M. ( 2015 ). Fabrication of micro/nanoscale motors . Chemical Reviews 115 ( 16 ): 8704 – 8735 .
- Soto , F. , Karshalev , E. , Zhang , F. et al. ( 2021 ). Smart materials for microrobots . Chemical Reviews 122 ( 5 ): 5365 – 5403 .
- Jurado-Sánchez , B. and Wang , J. ( 2018 ). Micromotors for environmental applications: a review . Environmental Science: Nano 5 ( 7 ): 1530 – 1544 .
- Mohammad , A.W. , Teow , Y.H. , Ang , W.L. et al. ( 2015 ). Nanofiltration membranes review: recent advances and future prospects . Desalination 356 : 226 – 254 .
- Subramanian , S. and Seeram , R. ( 2013 ). New directions in nanofiltration applications – are nanofibers the right materials as membranes in desalination? Desalination 308 : 198 – 208 .
- Sharma , Y.C. , Srivastava , V. , Singh , V.K. et al. ( 2009 ). Nano-adsorbents for the removal of metallic pollutants from water and wastewater . Environmental Technology 30 ( 6 ): 583 – 609 .
- Choudhari , S. , Habimana , O. , Hannon , J. et al. ( 2017 ). Dynamics of silver elution from functionalised antimicrobial nanofiltration membranes . Biofouling 33 ( 6 ): 520 – 529 .
- Kamari , S. and Shahbazi , A. ( 2020 ). High-performance nanofiltration membrane blended by Fe 3 O 4 @SiO 2 –CS bionanocomposite for efficient simultaneous rejection of salts/heavy metals ions/dyes with high permeability, retention increase and fouling decline . Chemical Engineering Journal 417 : 127930 .
- Kamari , S. and Shahbazi , A. ( 2020 ). Biocompatible Fe 3 O 4 @SiO 2 -NH 2 nanocomposite as a green nanofiller embedded in PES-nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long-term operation and reusability tests . Chemosphere 243 : 125282 .
- Ghaemi , N. , Madaeni , S.S. , Daraei , P. et al. ( 2015 ). Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe 3 O 4 nanoparticles . Chemical Engineering Journal 263 : 101 – 112 .
- Bandehali , S. , Parvizian , F. , Moghadassi , A. et al. ( 2020 ). Improvement in separation performance of PEI-based nanofiltration membranes by using l -cysteine functionalized POSS-TiO 2 composite nanoparticles for removal of heavy metal ion . Korean Journal of Chemical Engineering 37 ( 9 ): 1552 – 1564 .
- Zhang , Z. , Rahman , M.M. , Abetz , C. , and Abetz , V. ( 2020 ). High-performance asymmetric isoporous nanocomposite membranes with chemically-tailored amphiphilic nanochannels . Journal of Materials Chemistry A 8 ( 19 ): 9554 – 9566 .
- Parvizian , F. , Ansari , F. , and Bandehali , S. ( 2020 ). Oleic acid-functionalized TiO 2 nanoparticles for fabrication of PES-based nanofiltration membranes . Chemical Engineering Research and Design 156 : 433 – 441 .
- Huang , K. , Quan , X. , Li , X. e t al. ( 2018 ). Improved surface hydrophilicity and antifouling property of nanofiltration membrane by grafting NH 2 -functionalized silica nanoparticles . Polymers for Advanced Technologies 29 ( 12 ): 3159 – 3170 .
- Abadikhah , H. , Kalali , E.N. , Behzadi , S. et al. ( 2019 ). High flux thin film nanocomposite membrane incorporated with functionalized TiO 2 @reduced graphene oxide nanohybrids for organic solvent nanofiltration . Chemical Engineering Science 204 : 99 – 109 .
- Bagheripour , E. , Moghadassi , A.R. , Hosseini , S.M. et al. ( 2018 ). Highly hydrophilic and antifouling nanofiltration membrane incorporated with water-dispersible composite activated carbon/chitosan nanoparticles . Chemical Engineering Research and Design 132 : 812 – 821 .
- Gao , Z.F. , Feng , Y. , Ma , D. , and Chung , T.-S. ( 2019 ). Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH 2 for organic solvent nanofiltration . Journal of Membrane Science 574 : 124 – 135 .
- Zhu , J. , Qin , L. , Uliana , A. et al. ( 2017 ). Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration . ACS Applied Materials & Interfaces 9 ( 2 ): 1975 – 1986 .
- Yang , S. , Li , H. , Zhang , X. et al. ( 2020 ). Amine-functionalized ZIF-8 nanoparticles as interlayer for the improvement of the separation performance of organic solvent nanofiltration (OSN) membrane . Journal of Membrane Science 614 : 118433 .
- Jurado-Sánchez , B. , Sattayasamitsathit , S. , Gao , W. et al. ( 2015 ). Self-propelled activated carbon Janus micromotors for efficient water purification . Small 11 ( 4 ): 499 – 506 .
- Orozco , J. , Mercante , L.A. , Pol , R. , and Merkoçi , A. ( 2016 ). Graphene-based Janus micromotors for the dynamic removal of pollutants . Journal of Materials Chemistry A 4 ( 9 ): 3371 – 3378 .
- Dong , Y. , Yi , C. , Yang , S. et al. ( 2019 ). A substrate-free graphene oxide-based micromotor for rapid adsorption of antibiotics . Nanoscale 11 ( 10 ): 4562 – 4570 .
- Baptista-Pires , L. , Orozco , J. , Guardia , P. , and Merkoçi , A. ( 2018 ). Architecting graphene oxide rolled-up micromotors: a simple paper-based manufacturing technology . Small 14 ( 3 ): 1702746 .
- Zhang , B. , Huang , G. , Wang , L. et al. ( 2019 ). Rolled-up monolayer graphene tubular micromotors: enhanced performance and antibacterial property . Chemistry – An Asian Journal 14 ( 14 ): 2479 – 2484 .
- Vilela , D. , Parmar , J. , Zeng , Y. et al. ( 2016 ). Graphene-based microbots for toxic heavy metal removal and recovery from water . Nano Letters 16 ( 4 ): 2860 – 2866 .
- Khezri , B. , Beladi Mousavi , S.M. , Sofer , Z. , and Pumera , M. ( 2019 ). Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives . Nanoscale 11 ( 18 ): 8825 – 8834 .
- Verma , A. , Shukla , M. , Kumar , S. et al. ( 2020 ). Mechanism of visible light enhanced catalysis over curcumin functionalized Ag nanocatalysts . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 240 : 118534 .
- Wang , Z. , Zhang , F. , Ning , A. et al. ( 2021 ). Nanosilver supported on inert nano-diamond as a direct plas monic photocatalyst for degradation of methyl blue . Journal of Environmental Chemical Engineering 9 ( 1 ): 104912 .
- Zhang , C. , Gu , Y. , Teng , G. et al. ( 2020 ). Fabrication of a double-shell Ag/AgCl/G-ZnFe 2 O 4 nanocube with enhanced light absorption and superior photocatalytic antibacterial activity . ACS Applied Materials & Interfaces 12 ( 26 ): 29883 – 29898 .
- Joseita dos Santos Costa , M. , dos Santos Costa , G. , Estefany Brandao Lima , A. et al. ( 2018 ). Photocurrent response and progesterone degradation by employing WO 3 films modified with platinum and silver nanoparticles . ChemPlusChem 83 ( 12 ): 1153 – 1161 .
- Zarzuela , R. , Moreno-Garrido , I. , Gil , M.L.A. , and Mosquera , M.J. ( 2021 ). Effects of surface functionalization with alkylalkoxysilanes on the structure, visible light photoactivity and biocidal performance of Ag-TiO 2 nanoparticles . Powder Technology 383 : 381 – 395 .
- Caschera , D. , Federici , F. , de Caro , T. et al. ( 2018 ). Fabrication of Eu-TiO 2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation . Applied Surface Science 427 : 81 – 91 .
- Khammar , S. , Bahramifar , N. , and Younesi , H. ( 2020 ). Preparation and surface engineering of CM-β-CD functionalized Fe 3 O 4 @TiO 2 nanoparticles for photocatalytic degradation of polychlorinated biphenyls (PCBs) from transformer oil . Journal of Hazardous Materials 394 : 122422 .
- Li , S. , Cai , J. , Wu , X. et al. ( 2018 ). TiO 2 @Pt@CeO 2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr(VI) and photo-oxidation of benzyl alcohol . Journal of Hazardous Materials 346 : 52 – 61 .
- Cai , J. , Wu , X. , Li , S. , and Zheng , F. ( 2017 ). Controllable location of Au nanoparticles as cocatalyst onto TiO 2 @CeO 2 nanocomposite hollow spheres for enhancing photocatalytic activity . Applied Catalysis B: Environmental 201 : 12 – 21 .
- Singh , J. , Juneja , S. , Soni , R.K. , and Bhattacharya , J. ( 2021 ). Sunlight mediated enhanced photocatalytic activity of TiO 2 nanoparticles functionalized CuO–Cu 2 O nanorods for removal of methylene blue and oxytetracycline hydrochloride . Journal of Colloid and Interface Science 590 : 60 – 71 .
- Khdary , N.H. , Alkhuraiji , W.S. , Sakthivel , T.S. et al. ( 2020 ). Synthesis of superior visible-light-driven nanophotocatalyst using high surface area TiO 2 nanoparticles decorated with Cu x O particles . Catalysts 10 ( 8 ): 872 .
- Rodwihok , C. , Charoensri , K. , Wongratanaphisan , D. et al. ( 2021 ). Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline . Journal of Materials Science and Technology 76 : 1 – 10 .
- Gu , S. , Zhao , X. , Zhou , X. et al. ( 2020 ). Nickel-doped porous ZnO nanosheets functionalized with CuInS 2 nanoparticles: an efficient photocatalyst for chromium(VI) reduction . ChemPlusChem 85 ( 1 ): 142 – 150 .
- Das , J. , Venkat , A. , Radhakrishnan , R. et al. ( 2020 ). Fabrication of silica supported Turkevich silver nanocomposites for efficient photocatalytic performance . Colloid and Interface Science Communications 39 : 100323 .
- Yang , C. , Cheng , J. , Chen , Y. , and Hu , Y. ( 2017 ). CdS nanoparticles immobilized on porous carbon polyhed rons derived from a metal–organic framework with enhanced visible light photocatalytic activity for antibiotic degradation . Applied Surface Science 420 : 252 – 259 .
- Sharifi , A. , Montazerghaem , L. , Naeimi , A. et al. ( 2019 ). Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation . Journal of Environmental Management 247 : 624 – 632 .
- Padhiari , S. and Hota , G. ( 2019 ). A Ag nanoparticle functionalized Sg-C 3 N 4 /Bi 2 O 3 2D nanohybrid: a promising visible light harnessing photocatalyst towards degradation of rhodamine B and tetracycline . Nanoscale Advances 1 ( 8 ): 3212 – 3224 .
- Liu , H. , Ma , Y. , Chen , J. et al. ( 2019 ). Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO 2 -assisted synthesized mesoporous carbon confined mixed-phase TiO 2 nanocomposites derived from MOFs . Applied Catalysis B: Environmental 250 : 337 – 346 .
- Wang , J. , Dong , R. , Yang , Q. et al. ( 2019 ). One body, two hands: photocatalytic function and Fenton effect-integrated light-driven micromotors for pollutant degradation . Nanoscale 11 ( 35 ): 16592 – 16598 .
- Kong , L. , Mayorga-Martinez , C.C. , Guan , J. , and Pumera , M. ( 2018 ). Fuel-free light-powered TiO 2 /Pt Janus micromotors for enhanced nitroaromatic explosives degradation . ACS Applied Materials & Interfaces 10 ( 26 ): 22427 – 22434 .
- Zhang , Q. , Dong , R. , Wu , Y. et al. ( 2017 ). Light-driven Au-WO 3 @C Janus micromotors for rapid photodegradation of dye pollutants . ACS Applied Materials & Interfaces 9 ( 5 ): 4674 – 4683 .
- Zhan , Z. , Wei , F. , Zheng , J. et al. ( 2020 ). Visible light driven recyclable micromotors for “on-the-fly” water remediation . Materials Letters 258 : 126825 .
- Ravelli , D. , Dondi , D. , Fagnoni , M. , and Albini , A. ( 2009 ). Photocatalysis. A multi-faceted concept for green chemistry . Chemical Society Reviews 38 ( 7 ): 1999 – 2011 .
- Christopher , P. , Xin , H. , and Linic , S. ( 2011 ). Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures . Nature Chemistry 3 ( 6 ): 467 – 472 .
- Garg , N. , Bera , S. , Rastogi , L. et al. ( 2020 ). Synthesis and characterization of l -asparagine stabilised gold nanoparticles: catalyst for degradation of organic dyes . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 232 : 118126 .
- Atta , A.M. , Moustafa , Y.M. , Al-Lohedan , H.A. et al. ( 2020 ). Methylene blue catalytic degradation using silver and magnetite nanoparticles functionalized with a poly(ionic liquid) based on quaternized dialkylethanolamine with 2-acrylamido-2-methylpropane sulfonate- co -vinylpyrrolidone . ACS Omega 5 ( 6 ): 2829 – 2842 .
- Krawczyk , K. , Waclawek , S. , Silvestri , D. et al. ( 2021 ). Surface modification of zero-valent iron nanoparticles with β-cyclodextrin for 4-nitrophenol conversion . Journal of Colloid and Interface Science 586 : 655 – 662 .
- Bastidas , G.K.G. , Sierra , C.A. , and Ramirez , H.R.Z. ( 2018 ). Heterogeneous Fenton oxidation of Orange II usi ng iron nanoparticles supported on natural and functionalized fique fiber . Journal of Environmental Chemical Engineering 6 ( 4 ): 4178 – 4188 .
- Fu , M. , Xing , J. , and Ge , Z. ( 2019 ). Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A . Science of the Total Environment 651 ( Pt. 2 ): 2857 – 2865 .
- Bakr , E.A. , El-Attar , H.G. , and Salem , M.A. ( 2020 ). Efficient catalytic degradation of single and binary azo dyes by a novel triple nanocomposite of Mn 3 O 4 /Ag/SiO 2 . Applied Organometallic Chemistry 34 ( 8 ).
- Perrotti , T.C. , Freitas , N.S. , Alzamora , M. et al. ( 2019 ). Green iron nanoparticles supported on amino-functionalized silica for removal of the dye methyl orange . Journal of Environmental Chemical Engineering 7 ( 4 ): 103237 .
- Sarker , M.Z. , Rahman , M.M. , Minami , H. et al. ( 2021 ). Mesoporous amine functionalized SiO 2 supported Cu nanocatalyst and a kinetic-mechanistic degradation study of azo dyes . Colloids and Surfaces A: Physicochemical and Engineering Aspects 617 : 126403 .
- Aher , A. , Thompson , S. , Nickerson , T. et al. ( 2019 ). Reduced graphene oxide-metal nanoparticle composite membranes for environmental separation and chloro-organic remediation . RSC Advances 9 ( 66 ): 38547 – 38557 .
- Boruah , P.K. , Darabdhara , G. , and Das , M.R. ( 2021 ). Polydopamine functionalized graphene sheets decorated with magnetic metal oxide nanoparticles as efficient nanozyme for the detection and degradation of harmful triazine pesticides . Chemosphere 268 : 129328 .
- Fu , K. , Liu , X. , Yu , D. et al. ( 2020 ). Highly efficient and selective Hg(II) removal from water using multilayered Ti 3 C 2 O x MXene via adsorption coupled with catalytic reduction mechanism . Environmental Science and Technology 54 ( 24 ): 16212 – 16220 .
- Nabi , S. , Sofi , F.A. , Rashid , N. et al. ( 2020 ). Au-nanoparticle loaded nickel-copper bimetallic MOF: an excellent catalyst for chemical degradation of Rhodamine B . Inorganic Chemistry Communications 117 .
- Ren , M. , Guo , W. , Guo , H. , and Ren , X. ( 2019 ). Microfluidic fabrication of bubble-propelled micromotors for wastewater treatment . ACS Applied Materials & Interfaces 11 ( 25 ): 22761 – 22767 .
- Maria-Hormigos , R. , Pacheco , M. , Jurado-Sánchez , B. , and Escarpa , A. ( 2018 ). Carbon nanotubes-ferrite-manganese dioxide micromotors for advanced oxidation processes in water treatment . Environmental Science: Nano 5 ( 12 ): 2993 – 3003 .