Metal Oxide Nanoparticles for Environmental Remediation
Abhilash Venkateshaiah
Technical University of Liberec (TUL), Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Department of Environmental Catalysis, Studentská 1402/2, Liberec, 461 17 Czech Republic
Search for more papers by this authorMiroslav Černík
Technical University of Liberec (TUL), Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Department of Environmental Catalysis, Studentská 1402/2, Liberec, 461 17 Czech Republic
Search for more papers by this authorVinod V.T. Padil
Technical University of Liberec (TUL), Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Department of Environmental Catalysis, Studentská 1402/2, Liberec, 461 17 Czech Republic
Search for more papers by this authorAbhilash Venkateshaiah
Technical University of Liberec (TUL), Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Department of Environmental Catalysis, Studentská 1402/2, Liberec, 461 17 Czech Republic
Search for more papers by this authorMiroslav Černík
Technical University of Liberec (TUL), Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Department of Environmental Catalysis, Studentská 1402/2, Liberec, 461 17 Czech Republic
Search for more papers by this authorVinod V.T. Padil
Technical University of Liberec (TUL), Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Department of Environmental Catalysis, Studentská 1402/2, Liberec, 461 17 Czech Republic
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
Environmental pollution is among the biggest challenges faced by the global society today. This is largely due to rapid urbanization and industrialization. As a result, more and more research focuses on alternative methods of remediating and preserving contaminated ecosystems. Among such techniques, nanomaterials have become an exciting and evolving area of study. One such nanomaterial that has been shown to play a key role in environmental remediation is metal oxide nanoparticles. Due to their unusual physicochemical properties, such as abundant surface-active sites, tailorable size and shape, and high chemical stability, metal oxide nanoparticles have continued to draw considerable attention. Several metal oxide nanoparticles have been synthesized over the last several decades via physical, chemical, and biological means and their uses have been studied in numerous environmental remediation techniques. Despite being used in various roles, metal oxide nanoparticles are commonly used as adsorbents, catalysts, or antimicrobial agents. This chapter briefly presents the various techniques of metal oxide nanoparticle synthesis, their mechanism of remediation with brief overview of most commonly used metal oxide nanoparticles, such as TiO 2 , ZnO, iron oxides, CuO, SnO 2 , and WO 3 .
References
- Gopinath , K.P. , Vo , D.V.N. , Prakash , D.G. et al. ( 2020 ). Environmental applications of carbon-based materials: a review . Environmental Chemistry Letters Springer 1 : 3 .
-
Fadlalla , M.I.
,
Senthil Kumar , P.
,
Selvam , V.
, and
Ganesh Babu , S.
(
2019
).
Recent advances in nanomaterials for wastewater treatment
. In:
Advanced Nanostructured Materials for Environmental Remediation
(ed.
M. Naushad
,
S. Rajendran
and
F. Gracia
),
21
–
58
.
Cham, Switzerland
:
Springer
.
10.1007/978-3-030-04477-0_2 Google Scholar
- Guerra , F.D. , Attia , M.F. , Whitehead , D.C. , and Alexis , F. ( 2018 ). Nanotechnology for environmental remediation: materials and applications . Molecules MDPI AG 23 : 1760 .
-
Bhandari , G.
(
2018
).
Environmental nanotechnology: applications of nanoparticles for bioremediation
. In:
Approaches in Bioremediation
(ed.
R. Prasad
and
E. Aranda
),
301
–
315
.
Cham, Switzerland
:
Springer International Publishing
.
10.1007/978-3-030-02369-0_13 Google Scholar
-
Rani , M.
and
Shanker , U.
(
2020
).
Remediation of organic pollutants by potential functionalized nanomaterials
. In:
Handbook of Functionalized Nanomaterials for Industrial Applications
(ed.
C.M. Hussain
),
327
–
398
.
Elsevier
.
10.1016/B978-0-12-816787-8.00013-2 Google Scholar
- Escorihuela , L. , Martorell , B. , Rallo , R. , and Fernández , A. ( 2018 ). Toward computational and experimental characterisation for risk assessment of metal oxide nanoparticles . Environmental Science: Nano Royal Society of Chemistry 5 : 2241 – 2251 .
-
Ganachari , S.V.
,
Hublikar , L.
,
Yaradoddi , J.S.
, and
Math , S.S.
(
2019
).
Metal oxide nanomaterials for environmental applications
. In:
Handbook of Ecomaterials
(ed.
L. Myriam
,
T. Martínez
,
O.V. Kharissova
and
B.I. Kharisov
),
2357
–
2368
.
Cham, Switzerland
:
Springer International Publishing
.
10.1007/978-3-319-68255-6_196 Google Scholar
- Jun , Y.W. , Seo , J.W. , and Cheon , J. ( 2008 ). Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences . Accounts of Chemical Research 41 ( 2 ): 179 – 189 .
- Franke , M.E. , Koplin , T.J. , and Simon , U. ( 2006 ). Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2 : 36 – 50 .
- Sengul , A.B. and Asmatulu , E. ( 2020 ). Toxicity of metal and metal oxide nanoparticles: a review . Environmental Chemistry Letters 18 : 1659 – 1683 .
-
Kalita , E.
and
Baruah , J.
(
2020
).
Environmental remediation
. In:
Colloidal Metal Oxide Nanoparticl
es
(ed.
S. Thomas
,
A.T. Sunny
and
P. Velayudhan
),
525
–
576
.
Elsevier
.
10.1016/B978-0-12-813357-6.00014-0 Google Scholar
- Vallejos , S. , Di Maggio , F. , Shujah , T. , and Blackman , C. ( 2016 ). Chemical vapour deposition of gas sensitive metal oxides . Chemosensors 4 ( 1 ): 4 .
-
Mathur , S.
,
Singh , A.P.
,
Müller , R.
et al. (
2012
).
Metal-organic chemical vapor deposition of metal oxide films and nanostructures
. In:
Ceramics Science and Technology
(ed.
R. Riedel
and
I. Chen
),
291
–
336
.
Weinheim, Germany
:
Wiley-VCH
.
10.1002/9783527631957.ch12 Google Scholar
- Vallejos , S. , Stoycheva , T. , Umek , P. et al. ( 2011 ). Au nanoparticle-functionalised WO 3 nanoneedles and their application in high sensitivity gas sensor devices . Chemical Communications 47 ( 1 ): 565 – 567 .
- Stankic , S. , Müller , M. , Diwald , O. et al. ( 2005 ). Size-dependent optical properties of MgO nanocubes . Angewandte Chemie International Edition 44 ( 31 ): 4917 – 4920 .
- Famili , Z. , Dorranian , D. , and Sari , A.H. ( 2020 ). Laser ablation-assisted synthesis of tungsten sub-oxide (W 17 O 47 ) nanoparticles in water: effect of laser fluence . Optical and Quantum Electronics 52 ( 6 ): 305 .
- Fakhari , M. , Torkamany , M.J. , Mirnia , S.N. , and Elahi , S.M. ( 2018 ). UV–visible light-induced antibacterial and photocatalytic activity of half harmonic generator WO 3 nanoparticles synthesized by Pulsed Laser Ablation in water . Optical Materials (Amsterdam) 85 : 491 – 499 .
- Solati , E. and Dorranian , D. ( 2016 ). Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water . Bulletin of Materials Science 39 ( 7 ): 1677 – 1684 .
- Zamiri , R. , Zakaria , A. , Ahangar , H.A. et al. ( 2012 ). Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation . Journal of Alloys and Compounds 516 : 41 – 48 .
-
Semaltianos , N.G.
(
2015
).
Nanoparticles by laser ablation of bulk target materials in liquids
. In:
Handbook of Nanoparticles
(ed.
M. Aliofkhazraei
),
1
–
22
.
Cham, Switzerland
:
Springer International Publishing
.
10.1007/978-3-319-13188-7_1-1 Google Scholar
- Šepelák , V. , Bégin-Colin , S. , and Le Caër , G. ( 2012 ). Transformations in oxides induced by high-energy ball-milling . Dalton Transactions . The Royal Society of Chemistry 41 : 11927 – 11948 .
- Soytaş , S.H. , Oğuz , O. , and Menceloğlu , Y.Z. ( 2018 ). Polymer nanocomposites with decorated metal oxides . In: Polymer Composites with Functionalized Nanoparticles: Synthesis, Properties, and Applications (ed. K. Pielichowski and T.M. Majka ), 287 – 323 . Elsevier .
- Nawaz , M. , Sliman , Y. , Ercan , I. et al. ( 2018 ). Magnetic and pH-responsive magnetic nanocarriers . In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Advanced Nanocarriers for Therapeutics , vol. 2 (ed. A.S.H. Makhlouf and N.Y. Abu-Thabit ), 37 – 85 . Elsevier .
- Huang , G. , Lu , C.H. , and Yang , H.H. ( 2018 ). Magnetic nanomaterials for magnetic bioanalysis . In: Novel Nanomaterials for Biomedical, Environmental and Energy Applications (ed. X. Wang and X. Chen ), 89 – 109 . Elsevier .
-
Clemons , T.D.
,
Kerr , R.H.
, and
Joos , A.
(
2019
).
Multifunctional magnetic nanoparticles: design, syn
thesis, and biomedical applications
. In:
Comprehensive Nanoscience and Nanotechnology
(ed.
D.L. Andrews
,
R.H. Lipson
and
T. Nann
),
193
–
210
.
Elsevier
.
10.1016/B978-0-12-803581-8.10462-X Google Scholar
-
Prasad , S.
,
Kumar , V.
,
Kirubanandam , S.
, and
Barhoum , A.
(
2018
).
Engineered nanomaterials: nanofabrication and surface functionalization
. In:
Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends
(ed.
A. Barhoum
and
A.S.H. Makhlouf
),
305
–
340
.
Elsevier Inc.
10.1016/B978-0-323-51254-1.00011-7 Google Scholar
-
de Oliveira Sousa Neto , V.
,
Freire , T.M.
,
Saraiva , G.D.
et al. (
2019
).
Water treatment devices based on zero-valent metal and metal oxide nanomaterials
. In:
Nanomaterials Applications for Environmental Matrices: Water, Soil and Air
(ed.
R.F. Nascimento
,
O.P. Ferreira
,
A.J. Paula
and
V.O.S. Neto
),
187
–
225
.
Elsevier
.
10.1016/B978-0-12-814829-7.00005-7 Google Scholar
-
Rane , A.V.
,
Kanny , K.
,
Abitha , V.K.
, and
Thomas , S.
(
2018
).
Methods for synthesis of nanoparticles and fabrication of nanocomposites
. In:
Synthesis of Inorganic Nanomaterials
(ed.
S.M. Bhagyaraj
,
O.S. Oluwafemi
,
N. Kalarikkal
and
S. Thomas
),
121
–
139
.
Elsevier
.
10.1016/B978-0-08-101975-7.00005-1 Google Scholar
-
Nunes , D.
,
Pimentel , A.
,
Santos , L.
et al. (
2019
).
Synthesis, design, and morphology of metal oxide nanostructures
. In:
Metal Oxide Nanostructures
(ed.
D. Nunes
,
A. Pimentel
and
L. Santos
),
21
–
57
.
Elsevier
.
10.1016/B978-0-12-811512-1.00002-3 Google Scholar
-
Ashik , U.P.M.
,
Kudo , S.
, and
Hayashi , J.
(
2018
).
An overview of metal oxide nanostructures
. In:
Synthesis of Inorganic Nanomaterials
(ed.
S.M. Bhagyaraj
,
O.S. Oluwafemi
,
N. Kalarikkal
and
S. Thomas
),
19
–
57
.
Elsevier
.
10.1016/B978-0-08-101975-7.00002-6 Google Scholar
- Du , L. , Du , Y. , Li , Y. et al. ( 2010 ). Surfactant-assisted solvothermal synthesis of Ba(CoTi) x Fe 12−2 x O 19 nanoparticles and enhancement in microwave absorption properties of polyaniline . Journal of Physical Chemistry C 114 ( 46 ): 19600 – 19606 .
-
Grabowska , E.
,
Marchelek , M.
,
Paszkiewicz-Gawron , M.
, and
Zaleska-Medynska , A.
(
2018
).
Metal oxide photocatalysts
. In:
Metal Oxide-Based Photocatalysis: Fundamentals and Prospects for Application
(ed.
G. Korotcenkov
),
51
–
209
.
Elsevier
.
10.1016/B978-0-12-811634-0.00003-2 Google Scholar
- Zare , E.N. , Padil , V.V.T. , Mokhtari , B. et al. ( 2020 ). Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications . Advances in Colloid and Interface Science . Elsevier B.V. 283 : 102236 .
- Yuliarto , B. , Septiani , N.L.W. , Kaneti , Y.V. et al. ( 2019 ). Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio-related applications . New Journal of Chemistry 43 ( 40 ): 15846 – 15856 .
- Gebre , S.H. and Sendeku , M.G. ( 2019 ). New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview . SN Applied Sciences 1 ( 8 ): 1 – 28 .
- Ali , M.A. , Ahmed , T. , Wu , W. et al. ( 2020 ). Advancements in plant and microbe-based synthesis o f metallic nanoparticles and their antimicrobial activity against plant pathogens . Nanomaterials 10 ( 6 ): 1146 .
- Wang , L. , Shi , C. , Pan , L. et al. ( 2020 ). Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review . Nanoscale . Royal Society of Chemistry 12 : 4790 – 4815 .
- Anastopoulos , I. , Hosseini-Bandegharaei , A. , Fu , J. et al. ( 2018 ). Use of nanoparticles for dye adsorption: review . Journal of Dispersion Science and Technology 39 ( 6 ): 836 – 847 .
- Gutierrez , A.M. , Dziubla , T.D. , and Hilt , J.Z. ( 2017 ). Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment . Reviews on Environmental Health . Walter de Gruyter GmbH 32 : 111 – 117 .
- Theerthagiri , J. , Chandrasekaran , S. , Salla , S. et al. ( 2018 ). Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation . Journal of Solid State Chemistry 267 : 35 – 52 .
- Danish , M.S.S. , Bhattacharya , A. , Stepanova , D. et al. ( 2020 ). A systematic review of metal oxide applications for energy and environmental sustainability . Metals (Basel) 10 ( 12 ): 1604 .
- Djurišić , A.B. , Leung , Y.H. , and Ng , A.M.C. ( 2014 ). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis . Materials Horizons 1 : 400 – 410 .
- Bakbolat , B. , Daulbayev , C. , Sultanov , F. et al. ( 2020 ). Recent developments of TiO 2 -based photocatalysis in the hydrogen evolution and photodegradation: a review . Nanomaterials 10 ( 9 ): 1790 .
- Reza , K.M. , Kurny , A. , and Gulshan , F. ( 2017 ). Parameters affecting the photocatalytic degradation of dyes using TiO 2 : a review . Applied Water Science 7 ( 4 ): 1569 – 1578 .
- Liu , X. , Zhai , H. , Wang , P. et al. ( 2019 ). Synthesis of a WO 3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe 3+ doping and superficial Pt loading for ethylene degradation under visible-light irradiation . Catalysis Science & Technology 9 ( 3 ): 652 – 658 .
- Mishra , M. and Chun , D.M. ( 2015 ). α-Fe 2 O 3 as a photocatalytic material: a review . Applied Catalysis A: General 498 : 126 – 141 .
- Hitam , C.N.C. and Jalil , A.A. ( 2020 ). A review on exploration of Fe 2 O 3 photocatalyst towards degradation of dyes and organic contaminants . Journal of Environmental Management . Academic Press 258 : 110050 .
- Konstas , P.-S. , Konstantinou , I. , Petrakis , D. , and Albanis , T. ( 2018 ). Development of SrTiO 3 photocatalysts with visible light response using amino acids as dopant sources for the degradation of organic pollutants in aqueous systems . Catalysts 8 ( 11 ): 528 .
- Li , Y. , Yang , Q. , Wang , Z. et al. ( 2018 ). Rapid fabrication of SnO 2 nanoparticle photocatalyst: computational understanding and photocatalytic degradation of organic dye . Inorganic Chemistry Frontiers 5 ( 12 ): 3005 – 3014 .
- Raizada , P. , Sudhaik , A. , Patial , S. et al. ( 2020 ). Engineering nanostructures of CuO-based photoc atalysts for water treatment: current progress and future challenges . Arabian Journal of Chemistry 13 ( 11 ): 8424 – 8457 .
- Koiki , B.A. and Arotiba , O.A. ( 2020 ). Cu 2 O as an emerging semiconductor in photocatalytic and photoelectrocatalytic treatment of water contaminated with organic substances: a review . RSC Advances 10 : 36514 – 36525 .
- Stankic , S. , Suman , S. , Haque , F. , and Vidic , J. ( 2016 ). Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties . Journal of Nanobiotechnology . BioMed Central Ltd. 14 : 73 .
- Dizaj , S.M. , Lotfipour , F. , Barzegar-Jalali , M. et al. ( 2014 ). Antimicrobial activity of the metals and metal oxide nanoparticles . Materials Science and Engineering C 44 : 278 – 284 .
- Sirelkhatim , A. , Mahmud , S. , Seeni , A. et al. ( 2015 ). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism . Nano-Micro Letters SpringerOpen 7 : 219 – 242 .
- Zhang , L. , Ding , Y. , Povey , M. , and York , D. ( 2008 ). ZnO nanofluids – a potential antibacterial agent . Progress in Natural Science 18 ( 8 ): 939 – 944 .
- Carey , J.H. , Lawrence , J. , and Tosine , H.M. ( 1976 ). Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions . Bulletin of Environmental Contamination and Toxicology 16 ( 6 ): 697 – 701 .
- Sarkar , S. , Das , R. , Choi , H. , and Bhattacharjee , C. ( 2014 ). Involvement of process parameters and various modes of application of TiO 2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes – a short review . RSC Advances 4 : 57250 – 57266 .
- Sathiyan , K. , Bar-Ziv , R. , Mendelson , O. , and Zidki , T. ( 2020 ). Controllable synthesis of TiO 2 nanoparticles and their photocatalytic activity in dye degradation . Materials Research Bulletin 126 : 110842 .
-
Varma , K.S.
,
Tayade , R.J.
,
Shah , K.J.
et al. (
2020
).
Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO
2
nanomaterials: a review
.
Water-Energy Nexus
3
:
46
–
61
.
10.1016/j.wen.2020.03.008 Google Scholar
- Lan , Y. , Lu , Y. , and Ren , Z. ( 2013 ). Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications . Nano Energy 2 : 1031 – 1045 .
- Wang , M.C. , Lin , H.J. , Wang , C.H. , and Wu , H.C. ( 2012 ). Effects of annealing temperature on the photocatalytic activity of N-doped TiO 2 thin films . Ceramics International 38 ( 1 ): 195 – 200 .
- Chen , F. , Fang , P. , Gao , Y. et al. ( 2012 ). Effective removal of high-chroma crystal violet over TiO 2 -based nanosheet by adsorption-photocatalytic degradation . Chemical Engineering Journal 204, 205 : 107 – 113 .
- Wang , R. , Cai , X. , and Shen , F. ( 2014 ). TiO 2 hollow microspheres with mesoporous surface: superior adsorption performance for dye removal . Applied Surface Science 305 : 352 – 358 .
- Jiang , Z. , Wickramasinghe , S. , Tsai , Y.H. et al. ( 2020 ). Modeling and experimental studies on adsorption and photocatalytic performance of nitrogen-doped TiO 2 prepared via the sol–gel method . Catalysts 10 ( 12 ): 1449 .
- Nazari , A. , Nakhaei , M. , and Yari , A.R. ( 2020 ). Arsenic adsorption by TiO 2 nanoparticles under con ditions similar to groundwater: batch and column studies . International Journal of Environmental Research 15 ( 3 ): 1 – 13 .
- Khezerlou , A. , Alizadeh-Sani , M. , Azizi-Lalabadi , M. , and Ehsani , A. ( 2018 ). Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses . Microbial Pathogenesis 123 : 505 – 526 .
- De Pasquale , I. , Lo Porto , C. , Dell'Edera , M. et al. ( 2020 ). Photocatalytic TiO 2 -based nanostructured materials for microbial inactivation . Catalysts 10 ( 12 ): 1382 .
- Reddy , P.V.L. , Kavitha , B. , Reddy , P.A.K. , and Kim , K.H. ( 2017 ). TiO 2 -based photocatalytic disinfection of microbes in aqueous media: a review . Environmental Research 154 : 296 – 303 .
- Lei , C. , Pi , M. , Jiang , C. et al. ( 2017 ). Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red . Journal of Colloid and Interface Science 490 : 242 – 251 .
- Mirzaeifard , Z. , Shariatinia , Z. , Jourshabani , M. , and Rezaei Darvishi , S.M. ( 2020 ). ZnO photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation . Industrial and Engineering Chemistry Research 59 ( 36 ): 15894 – 15911 .
- Ong , C.B. , Ng , L.Y. , and Mohammad , A.W. ( 2018 ). A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications . Renewable and Sustainable Energy Reviews . Elsevier Ltd. 81 : 536 – 551 .
- Kumar , N. , Bhadwal , A.S. , Garg , M. et al. ( 2017 ). Photocatalytic and antibacterial biomimetic ZnO nanoparticles . Analytical Methods 9 ( 33 ): 4776 – 4782 .
- Gupta , A. , Saurav , J.R. , and Bhattacharya , S. ( 2015 ). Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration . RSC Advances 5 ( 87 ): 71472 – 71481 .
- Sultana , K.A. , Islam , M.T. , Silva , J.A. et al. ( 2020 ). Sustainable synthesis of zinc oxide nanoparticles for photocatalytic degradation of organic pollutant and generation of hydroxyl radical . Journal of Molecular Liquids 307 : 112931 .
- Divband , B. , Khatamian , M. , Eslamian , G.R.K. , and Darbandi , M. ( 2013 ). Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation . Applied Surface Science 284 : 80 – 86 .
- Assi , N. , Mohammadi , A. , Sadr Manuchehri , Q. , and Walker , R.B. ( 2015 ). Synthesis and characterization of ZnO nanoparticle synthesized by a microwave-assisted combustion method and catalytic activity for the removal of ortho -nitrophenol . Desalination and Water Treatment 54 ( 7 ): 1939 – 1948 .
- Ba-Abbad , M.M. , Kadhum , A.A.H. , Mohamad , A.B. et al. ( 2013 ). Visible light photocatalytic activity of Fe 3+ -doped ZnO nanoparticle prepared via sol–gel technique . Chemosphere 91 ( 11 ): 1604 – 1611 .
- Bechambi , O. , Sayadi , S. , and Najjar , W. ( 2015 ). Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism . Journal of Industrial and Engineering Chemistry 32 : 201 – 210 .
- Sin , J.C. , Lam , S.M. , Lee , K.T. , and Mohamed , A.R. ( 2013 ). Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2,4-dichlorophenol degradation . Journal of Colloid and Interface Science 401 : 40 – 49 .
- Yashni , G. , Al-Gheethi , A. , Mohamed , R. et al. ( 2020 ). Photocatalysis of xenobiotic organic compounds in greywater using zinc oxide nanoparticles: a critical review . Water and Environment Journal 35 : 190 – 217 .
- Zhang , F. , Chen , X. , Wu , F. , and Ji , Y. ( 2016 ). High adsorption capability and selectivity of ZnO nanoparticles for dye removal . Colloids and Surfaces A: Physicochemical and Engineering Aspects 509 : 474 – 483 .
- Le , A.T. , Pung , S.Y. , Sreekantan , S. et al. ( 2019 ). Mechanisms of removal of heavy metal ions by ZnO particles . Heliyon 5 ( 4 ): e01440 .
- Dimapilis , E.A.S. , Hsu , C.S. , Mendoza , R.M.O. , and Lu , M.C. ( 2018 ). Zinc oxide nanoparticles for water disinfection . Sustainable Environment Research . Chinese Institute of Environmental Engineering 28 : 47 – 56 .
- Zhang , C. , Yu , Z. , Zeng , G. et al. ( 2016 ). Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd . Chemical Engineering Journal 284 : 247 – 259 .
- Ajinkya , N. , Yu , X. , Kaithal , P. et al. ( 2020 ). Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future . Materials MDPI AG 13 : 1 – 35 .
- Pang , Y.L. , Lim , S. , Ong , H.C. , and Chong , W.T. ( 2016 ). Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications . Ceramics International 42 ( 1 ): 9 – 34 .
- Tuutijärvi , T. , Lu , J. , Sillanpää , M. , and Chen , G. ( 2009 ). As(V) adsorption on maghemite nanoparticles . Journal of Hazardous Materials 166 ( 2, 3 ): 1415 – 1420 .
- Cui , L. , Wang , Y. , Gao , L. et al. ( 2015 ). EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property . Chemical Engineering Journal 281 : 1 – 10 .
- Liu , Y. , Wang , Y. , Zhou , S. et al. ( 2012 ). Synthesis of high saturation magnetization superparamagnetic Fe 3 O 4 hollow microspheres for swift chromium removal . ACS Applied Materials & Interfaces 4 ( 9 ): 4913 – 4920 .
- Li , Q. , Kartikowati , C.W. , Horie , S. et al. ( 2017 ). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe 3 O 4 nanoparticles . Scientific Reports 7 ( 1 ): 9894 .
- Ali , N. , Zaman , H. , Bilal , M. et al. ( 2019 ). Environmental perspectives of interfacially active and magnetically recoverable composite materials – a review . Science of the Total Environment 670 : 523 – 538 .
- Akintelu , S.A. , Folorunso , A.S. , Folorunso , F.A. , and Oyebamiji , A.K. ( 2020 ). Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation . Heliyon 6 : e04508 .
- Nagarajan , D. and Venkatanarasimhan , S. ( 2019 ). Copper(II) oxide nanoparticles coated cellulose sponge—an effective heterogeneous catalyst for the reduction of toxic organic dyes . Environmental Science and Pollution Research 26 ( 22 ): 22958 – 22970 .
- Verma , M. , Tyagi , I. , Chandra , R. , and Gupta , V.K. ( 2017 ). Adsorptive removal of Pb(II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method . Journal of Molecular Liquids 225 : 936 – 944 .
- Gupta , V.K. , Chandra , R. , Tyagi , I. , and Verma , M. ( 2016 ). Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications . Journal of Colloid and Interface Science 478 : 54 – 62 .
- Meghana , S. , Kabra , P. , Chakraborty , S. , and Padmavathy , N. ( 2015 ). Understanding the pathway of antibacterial activity of copper oxide nanoparticles . RSC Advances 5 ( 16 ): 12293 – 12299 .
- Padil , V.V.T. and Černík , M. ( 2013 ). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application . International Journal of Nanomedicine 8 : 889 – 898 .
- Bogdanović , U. , Vodnik , V. , Mitrić , M. et al. ( 2015 ). Nanomaterial with high antimicrobial efficacy copper/polyaniline nanocomposite . ACS Applied Materials & Interfaces 7 ( 3 ): 1955 – 1966 .
- Bezza , F.A. , Tichapondwa , S.M. , and Chirwa , E.M.N. ( 2020 ). Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents . Scientific Reports 10 ( 1 ): 16680 .
- Ren , J. , Wang , W. , Sun , S. et al. ( 2011 ). Crystallography facet-dependent antibacterial activity: the case of Cu 2 O . Industrial and Engineering Chemistry Research 50 ( 17 ): 10366 – 10369 .
- Midander , K. , Cronholm , P. , Karlsson , H.L. et al. ( 2009 ). Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study . Small 5 ( 3 ): 389 – 399 .
-
Solioz , M.
(
2018
).
Copper and Bacteria
,
Springer Briefs in Molecular Science
.
Springer International Publishing
.
10.1007/978-3-319-94439-5 Google Scholar
- Gao , C. , Li , X. , Lu , B. et al. ( 2012 ). A facile method to prepare SnO 2 nanotubes for use in efficient SnO 2 –TiO 2 core–shell dye-sensitized solar cells . Nanoscale 4 ( 11 ): 3475 – 3481 .
- Kumar , K.Y. , Raj , T.N.V. , Archana , S. et al. ( 2016 ). SnO 2 nanoparticles as effective adsorbents for the removal of cadmium and lead from aqueous solution: adsorption mechanism and kinetic studies . Journal of Water Process Engineering 13 : 44 – 52 .
- Al-Hamdi , A.M. , Rinner , U. , and Sillanpää , M. ( 2017 ). Tin dioxide as a photocatalyst for water treatment: a review . Process Safety and Environmental Protection . Institution of Chemical Engineers 107 : 190 – 205 .
- Bhattacharjee , A. , Ahmaruzzaman , M. , and Sinha , T. ( 2015 ). A novel approach for the synthesis of SnO 2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136 ( PB ): 751 – 760 .
- Tammina , S.K. and Mandal , B.K. ( 2016 ). Tyrosine mediated synthesis of SnO 2 nanoparticles and their photocatalytic activity towards Violet 4 BSN dye . Journal of Molecular Liquids 221 : 415 – 421 .
- Begum , S. , Devi , T.B. , and Ah maruzzaman , M. ( 2016 ). l -lysine monohydrate mediated facile and environment friendly synthesis of SnO 2 nanoparticles and their prospective applications as a catalyst for the reduction and photodegradation of aromatic compounds . Journal of Environmental Chemical Engineering 4 ( 3 ): 2976 – 2989 .
- Begum , S. and Ahmaruzzaman , M. ( 2018 ). CTAB and SDS assisted facile fabrication of SnO 2 nanoparticles for effective degradation of carbamazepine from aqueous phase: a systematic and comparative study of their degradation performance . Water Research 129 : 470 – 485 .
- Huy , T.H. , Phat , B.D. , Thi , C.M. , and Van Viet , P. ( 2019 ). High photocatalytic removal of NO gas over SnO 2 nanoparticles under solar light . Environmental Chemistry Letters 17 ( 1 ): 527 – 531 .
- Rehman , S. , Asiri , S.M. , Khan , F.A. et al. ( 2019 ). Biocompatible tin oxide nanoparticles: synthesis, antibacterial, anticandidal and cytotoxic activities . ChemistrySelect 4 ( 14 ): 4013 – 4017 .
- Dutta , V. , Sharma , S. , Raizada , P. et al. ( 2021 ). An overview on WO 3 based photocatalyst for environmental remediation . Journal of Environmental Chemical Engineering 105018 .
- Chen , S. , Hu , Y. , Meng , S. , and Fu , X. ( 2014 ). Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C 3 N 4 -WO 3 . Applied Catalysis B: Environmental 150, 151 : 564 – 573 .
- Mohagheghian , A. , Karimi , S.A. , Yang , J.K. , and Shirzad-Siboni , M. ( 2016 ). Photocatalytic degradation of diazinon by illuminated WO 3 nanopowder . Desalination and Water Treatment 57 ( 18 ): 8262 – 8269 .
- Nguyen , T.T. , Nam , S.N. , Son , J. , and Oh , J. ( 2019 ). Tungsten trioxide (WO 3 )-assisted photocatalytic degradation of amoxicillin by simulated solar irradiation . Scientific Reports 9 ( 1 ): 1 – 18 .
- Yao , S. , Zhang , X. , Qu , F. et al. ( 2016 ). Hierarchical WO 3 nanostructures assembled by nanosheets and their applications in wastewater purification . Journal of Alloys and Compounds 689 : 570 – 574 .
- Zhang , J. , Fu , X. , Hao , H. , and Gan , W. ( 2018 ). Facile synthesis 3D flower-like Ag@WO 3 nanostructures and applications in solar-light photocatalysis . Journal of Alloys and Compounds 757 : 134 – 141 .
- Czech , B. , Zygmunt , P. , Kadirova , Z.C. et al. ( 2020 ). Effective photocatalytic removal of selected pharmaceuticals and personal care products by elsmoreite/tungsten oxide@ZnS photocatalyst . Journal of Environmental Management 270 : 110870 .
- Adhikari , S. , Mandal , S. , Sarkar , D. et al. ( 2017 ). Kinetics and mechanism of dye adsorption on WO 3 nanoparticles . Applied Surface Science 420 : 472 – 482 .
- Wang , F. , Li , C. , and Yu , J.C. ( 2012 ). Hexagonal tungsten trioxide nanorods as a rapid adsorbent for methylene blue . Separation and Purification Technology 91 : 103 – 107 .
- Mu , W. , Li , M. , Li , X. et al. ( 2015 ). Guanidine sulfate-assisted synthesis of hexagonal WO 3 nanoparticles with enhanced adsorption properties . Dalton Transactions 44 ( 16 ): 7419 – 7427 .
- Zheng , Y. , Cao , L. , Xing , G. et al. ( 2019 ). Microscale flower-like magnesium oxide for highly efficient photoc atalytic degradation of organic dyes in aqueous solution . RSC Advances 9 ( 13 ): 7338 – 7348 .
- Cai , Y. , Li , C. , Wu , D. et al. ( 2017 ). Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution . Chemical Engineering Journal 312 : 158 – 166 .
- Maji , J. , Pandey , S. , and Basu , S. ( 2020 ). Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles . Bulletin of Materials Science 43 ( 1 ): 25 .
- Chaudhary , S. , Sharma , P. , Singh , D. et al. ( 2017 ). Chemical and pathogenic cleanup of wastewater using surface-functionalized CeO 2 nanoparticles . ACS Sustainable Chemistry & Engineering 5 ( 8 ): 6803 – 6816 .
- Wu , B. and Lo , I.M.C. ( 2020 ). Surface functional group engineering of CeO 2 particles for enhanced phosphate adsorption . Environmental Science & Technology 54 ( 7 ): 4601 – 4608 .
-
Nyankson , E.
,
Adjasoo , J.
,
Efavi , J.K.
et al. (
2020
).
Synthesis and kinetic adsorption characteristics of zeolite/CeO
2
nanocomposite
.
Scientific African
7
:
e00257
.
10.1016/j.sciaf.2019.e00257 Google Scholar
- Mohan , S. , Kumar , V. , Singh , D.K. , and Hasan , S.H. ( 2016 ). Synthesis and characterization of rGO/ZrO 2 nanocomposite for enhanced removal of fluoride from water: kinetics, isotherm, and thermodynamic modeling and its adsorption mechanism . RSC Advances 6 ( 90 ): 87523 – 87538 .
- Chu , T.P.M. , Nguyen , N.T. , Vu , T.L. et al. ( 2019 ). Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal . Materials (Basel) 12 ( 3 ): 450 .
- Khobragade , M.U. and Pal , A. ( 2016 ). Fixed-bed column study on removal of Mn(II), Ni(II) and Cu(II) from aqueous solution by surfactant bilayer supported alumina . Separation Science and Technology 51 ( 8 ): 1287 – 1298 .
- Khobragade , M.U. and Pal , A. ( 2016 ). Adsorptive removal of Mn(II) from water and wastewater by surfactant-modified alumina . Desalination and Water Treatment 57 ( 6 ): 2775 – 2786 .
- Leow , W.R. , Ng , W.K.H. , Peng , T. et al. ( 2017 ). Al 2 O 3 surface complexation for photocatalytic organic transformations . Journal of the American Chemical Society 139 ( 1 ): 269 – 276 .
- Nasr , O. , Mohamed , O. , Al-Shirbini , A.S. , and Abdel-Wahab , A.M. ( 2019 ). Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO 2 using solar light . Journal of Photochemistry and Photobiology A: Chemistry 374 : 185 – 193 .
- Thiruppathi , M. , Senthil Kumar , P. , Devendran , P. et al. ( 2018 ). Ce@TiO 2 nanocomposites: an efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium . Journal of Alloys and Compounds 735 : 728 – 734 .
- Ammar , S.H. , Kareem , Y.S. , and Ali , A.D. ( 2018 ). Photocatalytic oxidative desulfurization of liquid petroleum fuels using magnetic CuO–Fe 3 O 4 nanocomposites . Journal of Environmental Chemical Engineering 6 ( 6 ): 6780 – 6786 .